Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Three-dimensional simulation of a new cooling strategy for proton exchange membrane fuel cell stack using a non-isothermal multiphase model

Abstract

In this study, a new cooling strategy for a proton exchange membrane (PEM) fuel cell stack is investigated using a three-dimensional (3D) multiphase non-isothermal model. The new cooling strategy follows that of the Honda's Clarity design and further extends to a cooling unit every five cells in stacks. The stack consists of 5 fuel cells sharing the inlet and outlet manifolds for reactant gas flows. Each cell has 7-path serpentine flow fields with a counter-flow configuration arranged for hydrogen and air streams. The coolant flow fields are set at the two sides of the stack and are simplified as the convective heat transfer thermal boundary conditions. This study also compares two thermal boundary conditions, namely limited and infinite coolant flow rates, and their impacts on the distributions of oxygen, liquid water, current density and membrane hydration. The difference of local temperature between these two cooling conditions is as much as 6.9 K in the 5-cell stack, while it is only 1.7 K in a single cell. In addition, the increased vapor concentration at high temperature (and hence water saturation pressure) dilutes the oxygen content in the air flow, reducing local oxygen concentration. The higher temperature in the stack also causes low membrane hydration, and consequently poor cell performance and non-uniform current density distribution, as disclosed by the simulation. The work indicates the new cooling strategy can be optimized by increasing the heat transfer coefficient between the stack and coolant to mitigate local overheating and cell performance reduction.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View