Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Differentiating Photoexcited Carrier and Phonon Dynamics in the Δ, L, and Γ Valleys of Si(100) with Transient Extreme Ultraviolet Spectroscopy

Abstract

Transient extreme ultraviolet (XUV) spectroscopy probes core level transitions to unoccupied valence and conduction band states. Uncertainty remains as to what degree the core-hole created by the XUV transition modifies the measurement of photoexcited electron and hole energies. Here, the Si L 2,3 edge is measured after photoexcitation of electrons to the δ, L, and σ valleys of Si(100). The measured changes in the XUV transition probability do not energetically agree with the increasing electron photoexcitation energy. The data experimentally confirm that, for the Si L 2,3 edge, the time-dependent electron and hole energies are partially obscured by the core-hole perturbation. A model based on many-body approximations and the Bethe-Salpeter equation is successfully used to predict the core-hole modification of the final transition density of states in terms of both electronic and structural dynamics. The resulting fit time constants match the excited-state electron thermalization time and the intervalley electron-phonon, intravalley electron-phonon, and phonon-phonon scattering times previously measured in silicon. The outlined approach is a more comprehensive framework for interpreting transient XUV absorption spectra in photoexcited semiconductors.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View