- Main
Synchrotron-based investigation of transition-metal getterability in n-type multicrystalline silicon
Published Web Location
https://doi.org/10.1063/1.4950765Abstract
Solar cells based on n-type multicrystalline silicon (mc-Si) wafers are a promising path to reduce the cost per kWh of photovoltaics; however, the full potential of the material and how to optimally process it are still unknown. Process optimization requires knowledge of the response of the metal-silicide precipitate distribution to processing, which has yet to be directly measured and quantified. To supply this missing piece, we use synchrotron-based micro-X-ray fluorescence (μ-XRF) to quantitatively map >250 metal-rich particles in n-type mc-Si wafers before and after phosphorus diffusion gettering (PDG). We find that 820 °C PDG is sufficient to remove precipitates of fast-diffusing impurities and that 920 °C PDG can eliminate precipitated Fe to below the detection limit of μ-XRF. Thus, the evolution of precipitated metal impurities during PDG is observed to be similar for n- and p-type mc-Si, an observation consistent with calculations of the driving forces for precipitate dissolution and segregation gettering. Measurements show that minority-carrier lifetime increases with increasing precipitate dissolution from 820 °C to 880 °C PDG, and that the lifetime after PDG at 920 °C is between the lifetimes achieved after 820 °C and 880 °C PDG.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-