Skip to main content
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Previously Published Works bannerUC Santa Barbara

Local, Real-Time Measurement of Drying Films of Aqueous Polymer Solutions Using Active Microrheology

Published Web Location

Oscillatory microdisk rheometry was applied to evaluate the evolution of the viscoelastic properties at the surface of a film of an aqueous solution of poly(vinyl alcohol) (PVA) during drying. The drying rate was measured concurrently, based upon measurements of the variation of film thickness. A fully hydrolyzed PVA solution shows a constant drying rate, while a less hydrolyzed PVA solution exhibits a decreased drying rate in the latter part of the drying process, which occurred at the same time as an increase of the elastic modulus. We suggest that this difference in behavior is a consequence of the fact that both the configuration of the PVA molecule and the strength of interaction with water depend on the degree to which the PVA is hydrolyzed. The polymer concentration at the film surface can be estimated from the measured viscosity at the surface for the fully hydrolyzed PVA solution, and this result then can be compared with two theoretical calculations: one in which the polymer concentration is assumed to remain uniform throughout the film, and the other in which the polymer concentration distribution is determined via a one-dimensional diffusion model. This comparison suggests that the polymer is first concentrated locally near the surface but later in the drying process the distribution of polymer becomes increasingly uniform, possibly due to a spontaneously generated convective flow inside the film.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View