Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Patterns of Hyaluronan Staining Are Modified by Fixation Techniques

Published Web Location

http://doi.org/10.1177/002215549704500813
No data is associated with this publication.
Abstract

The apparent intensity of hyaluronan (HA) staining in tissue sections can vary as a function of fixation techniques. We examined the histochemical distribution of HA in normal human skin using an HA-specific binding peptide derived from bovine nasal cartilage. The HA, particularly in the dermis, was best preserved in sections fixed in 10% acid-formalin with 70% ethanol. In contrast, sections fixed in the routine 10% neutral-buffered formalin had a much weaker intensity of HA staining. Furthermore, acid-formalin/ethanol-fixed sections retained much of their apparent HA after incubation with saline, in contrast to the neutral formalin-fixed sections, in which most of the stainable HA was lost. Such marked differences in staining intensity were not observed in slides stained with Alcian blue, a procedure presumed to stain HA as well as other glycosaminoglycans. Staining using the HA binding peptide was entirely absent when sections were first preincubated in hyaluronidase, whereas similar Alcian blue-stained sections retained most of their staining intensity. Caution should be exercised in evaluating the distribution of HA in tissues using the HA binding peptide, particularly when different fixation techniques among several laboratories are being compared. In addition, the ability to evaluate the HA content of tissues using Alcian blue staining should be reconsidered. The sulfated glycosaminolglycans of the "ground substance" appear to be the predominant substrates for Alcian blue.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item