Skip to main content
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

REFAME: Rain Estimation Using Forward-Adjusted Advection of Microwave Estimates


A new multiplatform multisensor satellite rainfall estimation technique is proposed in which sequences of Geostationary Earth Orbit infrared (GEO-IR) images are used to advect microwave (MW)-derived precipitation estimates along cloud motion streamlines and to further adjust the rainfall rates using local cloud classification. The main objective of the Rain Estimation using Forward-Adjusted advection of Microwave Estimates (REFAME) is to investigate whether inclusion of GEO-IR information can help to improve the advected MW precipitation rate as it gets farther in time from the previous MW overpass. The technique comprises three steps. The first step incorporates a 2D cloud tracking algorithm to capture cloud motion streamlines through successive IR images. The second step classifies cloudy pixels to a number of predefined clusters using brightness temperature (Tb) gradients between successive IR images along the cloud motion streamlines in combination with IR cloud-top brightness temperatures and textural features. A mean precipitation rate for each cluster is calculated using available MW-derived precipitation estimates. In the third step, the mean cluster precipitation rates are used to adjust MW precipitation intensities advected between available MW overpasses along cloud motion streamlines. REFAME is a flexible technique, potentially capable of incorporating diverse precipitation-relevant information, such as multispectral data. Evaluated over a range of spatial and temporal scales over the conterminous United States, the performance of the full REFAMEalgorithm compared favorably with products incorporating either no cloud tracking or no intensity adjustment. The observed improvements in root-mean-square error and especially in correlation coefficient between REFAME outputs and ground radar observations demonstrate that the new approach is effective in reducing the uncertainties and capturing the variation of precipitation intensity along cloud advection streamlines between MW sensor overpasses. An extended REFAME algorithm combines the adjusted advected MW rainfall rates with infrared-derived precipitation rates in an attempt to capture precipitation events initiating and decaying during the interval between two consecutive MW overpasses. Evaluation statistics indicate that the extended algorithm is effective to capture the life cycle of the convective precipitation, particularly for the interval between microwave overpasses in which precipitation starts or ends. © 2010 American Meteorological Society.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View