Skip to main content
eScholarship
Open Access Publications from the University of California

Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture

  • Author(s): McGrath, D
  • Steffen, K
  • Rajaram, H
  • Scambos, T
  • Abdalati, W
  • Rignot, E
  • et al.
Abstract

A key mechanism for the rapid collapse of both the Larsen A and B Ice Shelves was meltwater-driven crevasse propagation. Basal crevasses, large-scale structural features within ice shelves, may have contributed to this mechanism in three important ways: i) the shelf surface deforms due to modified buoyancy and gravitational forces above the basal crevasse, creating >10 m deep compressional surface depressions where meltwater can collect, ii) bending stresses from the modified shape drive surface crevassing, with crevasses reaching 40 m in width, on the flanks of the basal-crevasse-induced trough and iii) the ice thickness is substantially reduced, thereby minimizing the propagation distance before a full-thickness rift is created. We examine a basal crevasse (4.5 km in length, ∼230 m in height), and the corresponding surface features, in the Cabinet Inlet sector of the Larsen C Ice Shelf using a combination of high-resolution (0.5 m) satellite imagery, kinematic GPS and in situ ground penetrating radar. We discuss how basal crevasses may have contributed to the breakup of the Larsen B Ice Shelf by directly controlling the location of meltwater ponding and highlight the presence of similar features on the Amery and Getz Ice Shelves with high-resolution imagery. © 2012. American Geophysical Union. All Rights Reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View