Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Force for ancient and recent life: viral and stem‐loop RNA consortia promote life

Abstract

Lytic viruses were thought to kill the most numerous host (i.e., kill the winner). But persisting viruses/defectives can also protect against viruses, especially in a ubiquitous virosphere. In 1991, Yarmolinsky et al. discovered the addiction modules of P1 phage, in which opposing toxic and protective functions stabilize persistence. Subsequently, I proposed that lytic and persisting cryptic virus also provide addiction modules that promote group identity. In eukaryotes (and the RNA world), a distinct RNA virus-host relationship exists. Retrovirurses/retroposons are major contributors to eukaryotic genomes. Eukaryotic complexity appears to be mostly mediated by regulatory complexity involving noncoding retroposon-derived RNA. RNA viruses evolve via quasispecies, which contain cooperating, minority, and even opposing RNA types. Quasispecies can also demonstrate group preclusion (e.g., hepatitis C). Stem-loop RNA domains are found in long terminal repeats (and viral RNA) and mediate viral regulation/identity. Thus, stem-loop RNAs may be ancestral regulators. I consider the RNA (ribozyme) world scenario from the perspective of addiction modules and cooperating quasispecies (i.e., subfunctional agents that establish group identity). Such an RNA collective resembles a "gang" but requires the simultaneous emergence of endonuclease, ligase, cooperative catalysis, group identity, and history markers (RNA). I call such a collective a gangen (pathway to gang) needed for life to emerge.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View