Skip to main content
eScholarship
Open Access Publications from the University of California

Characterization of advanced gate stacks for SiCMOS by electron energy-loss spectroscopy in scanning transmission electron microscopy

  • Author(s): Foran, B
  • Barnett, J
  • Lysaght, P S
  • Agustin, M P
  • Stemmer, Susanne
  • et al.
Abstract

Novel metal oxide films and new metal gates are currently being developed for future generations of Si based field-effect transistors as the SiO2 gate dielectric and polycrystalline Si gate electrode are reaching scaling limits. These gate stacks are often comprised of sub-nanometer layers. Device properties are increasingly controlled by the complex structure and chemistry of interfaces between the layers. Electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM) is capable of providing insights into interfacial chemistry and local atomic structure with a spatial resolution unmatched by any other technique. Using gate stacks with Hf-silicate dielectrics as examples, we demonstrate the capabilities of STEM/EELS for analyzing the interfacial chemistry of novel gate stacks. We show that a priori unknown reaction layers of a few A thickness can be detected and identified even in the presence of substantial interfacial roughness that may obscure such layers in a high-resolution image. We discuss some experimental aspects of STEM/EELS chemical profiling applied to gate stacks and the factors affecting the interpretation. In particular, the effects of interfacial roughness, beam spreading, elemental analysis in a heavily scattering matrix, and the interpretation of the EELS core-loss fine-structures from ultrathin layers are discussed. (c) 2004 Elsevier B.V. All rights reserved.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View