Skip to main content
eScholarship
Open Access Publications from the University of California

Bulk Group-III Nitride Crystal Growth in Supercritical Ammonia-Sodium Solutions

  • Author(s): Griffiths, Steven
  • Advisor(s): Nakamura, Shuji
  • et al.
Abstract

Gallium nitride (GaN) and its alloys with indium nitride (InGaN) and aluminum nitride (AlGaN), collectively referred to as Group-III Nitride semiconductors, have enabled white solid-state lighting (SSL) sources and power electronic devices. While these technologies have already made a lasting, positive impact on society, improvements in design and efficiency are anticipated by shifting from heteroepitaxial growth on foreign substrates (such as sapphire, Si, SiC, etc.) to homoepitaxial growth on native, bulk GaN substrates.

Bulk GaN has not supplanted foreign substrate materials due to the extreme conditions required to achieve a stoichiometric GaN melt (temperatures and pressures in excess of 2200°C and 6 GPa, respectively). The only method used to produce bulk GaN on an industrial scale is hydride vapor phase epitaxy (HVPE), but the high cost of gaseous precursors and relatively poor crystal quality have limited the adoption of this technology. A solution growth technique known as the ammonothermal method has attracted interest from academia and industry alike for its ability to produce bulk GaN boules of exceedingly high crystal quality. The ammonothermal method employs supercritical ammonia (NH3) solutions to dissolve, transport, and crystallize GaN. However, ammonothermal growth pressures are still relatively high (~200 MPa), which has thus far prevented the acquisition of fundamental crystal growth knowledge needed to efficiently (i.e. through data-driven approaches) advance the field. This dissertation focused on addressing the gaps in the literature through two studies employing in situ fluid temperature analysis.

The first study focused on identifying the solubility of GaN in supercritical NH3-Na solutions. The design and utilization of in situ and ex situ monitoring equipment enabled the first reports of the two-phase nature of supercritical NH3-Na solutions, and of Ga-alloying of Ni-containing autoclave components. The effects of these error sources on the gravimetric determination of GaN solubility were explored in detail.

The second study was aimed at correlating autoclave dissolution and growth zone fluid temperatures with bulk GaN crystal growth kinetics, crystal quality, and impurity incorporation. The insights resulting from this analysis include the identification of the barrier between mass transport and surface integration-limited GaN growth regimes, GaN crystal shape evolution with fluid temperature, the sensitivity of (0001)-orientation crystal quality with fluid temperature, and impurity-specific incorporation activated from the dissolution and growth zones of the autoclave.

The results of the aforementioned studies motivated a paradigm-shift in ammonothermal growth. To address this need, a fundamentally different crystal growth approach involving isothermal solutions and tailor-made Group-III alloy source materials was developed/demonstrated. This growth method enabled impurity incorporation reduction compared to traditional ammonothermal GaN growth, and the realization of bulk, ternary Group-III Nitride crystals.

Main Content
Current View