Skip to main content
Download PDF
- Main
Outlier Detection in the Multiple Cluster Setting Using the Minimum Covariance Determinant Estimator
Abstract
Mahalanobis-type distances in which the shape matrix is derived from a consistent highbreakdown robust multivariate location and scale estimator can be used to find outlying points. Hardin and Rocke (http://www.cipic.ucdavis.edu/,,,dmrocke/preprints.htrnl)developed a new method for identifying outliers in a one-cluster setting using an F distribution. We extend the method to the multiple cluster case which gives a robust clustering method in conjunction with an outlier identification method. We provide results of the F distribution method for multiple clusters which have different sizes and shapes.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%