Skip to main content
eScholarship
Open Access Publications from the University of California

UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations bannerUC Santa Barbara

How tropical Pacific surface cooling contributed to accelerated sea ice melt from 2007 to 2012 as ice is thinned by anthropogenic forcing

Abstract

Over the past 40 years the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflects a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic (hereafter referred to as the “Pacific-Arctic teleconnection (PARC)”), which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800-yr) CESM preindustrial simulation. These results further support the role of remote SST forcing originating from the tropical Pacific in exciting significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a Cold Pacific - Warm Arctic connection.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View