Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Polymeric Electron-Selective Contact for Crystalline Silicon Solar Cells with an Efficiency Exceeding 19%

Abstract

Carrier-selective contacts have become a prominent path forward toward efficient crystalline silicon (c-Si) photovoltaics. Among the proposed contacting materials, organic materials may offer simplified and low-cost processing compared with typical vacuum deposition techniques. Here, branched polyethylenimine (b-PEI) is presented as an electron-transport layer (ETL) for c-Si solar cells. The incorporation of a b-PEI interlayer between c-Si(n) and Al leads to a low contact resistivity of 24 mω cm2. A silicon heterojunction solar cell integrated with b-PEI is demonstrated achieving a power conversion efficiency of 19.4%, which improves the benchmark efficiency of a c-Si solar cell with an organic ETL. This electron selectivity of b-PEI is attributed to its Lewis basicity, i.e., electron-donating ability, promoting favorable band bending at the c-Si surface for electron transport. Moreover, several other Lewis base polymers perform as efficient ETLs in organic/c-Si hybrid devices, indicating Lewis basicity could be a guideline for future organic ETL design.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View