Skip to main content
Open Access Publications from the University of California

Design, Simulation and control of a 100 MW-class solid oxide fuel cell gas turbine hybrid system

  • Author(s): Mueller, F
  • Tarroja, B
  • Maclay, J
  • Jabbari, F
  • Brouwer, J
  • Samuelsen, S
  • et al.

Published Web Location Commons Attribution 4.0 International Public License

A 100 MW-class planar solid oxide fuel cell synchronous gas turbine hybrid system has been designed, modeled, and controlled. The system is built of 70 functional fuel cell modules, each containing 10 fuel cell stacks, a blower to recirculate depleted cathode air, a depleted fuel oxidizer, and a cathode inlet air recuperator with bypass. The recuperator bypass serves to control the cathode inlet air temperature, while the variable speed cathode blower recirculates air to control the cathode air inlet temperature. This allows for excellent fuel cell thermal management without independent control of the gas turbine, which at this scale will most likely be a synchronous generator. In concept the demonstrated modular design makes it possible to vary the number of cells controlled by each fuel valve, power electronics module, and recirculation blower, so that actuators can adjust to variations in the hundreds of thousands of fuel cells contained within the 100 MW hybrid system for improved control and reliability. In addition, the modular design makes it possible to take individual fuel cell modules offline for maintenance while the overall system continues to operate. Parametric steady-state design analyses conducted on the system reveal that the overall fuel-to-electricity conversion efficiency of the current system increases with increased cathode exhaust recirculation. To evaluate and demonstrate the conceptualized design, the fully integrated system was modeled dynamically in MATLAB-SIMULINK. Simple proportional feedback with steady-state feed-forward controls for power tracking, thermal management, and stable gas turbine operation were developed for the system. Simulations of the fully controlled system indicate that the system has a high efficiency over a large range of operating conditions, decent transient load following capability, fuel and ambient temperature disturbance rejection, and the capability to operate with a varying number of fuel cell modules. The efforts here build on prior work and combine the efforts of system design, system operation, component performance characterization, and control to demonstrate hybrid transient capability in large-scale coal synthesis gas-based applications through simulation. Furthermore, the use of a modular fuel cell system design, the use of blower recirculation, and the need for integrated system controls are verified. © 2010 by ASME.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View