Skip to main content
Open Access Publications from the University of California

Function coupling of otoferlin with GAD65 acts to modulate GABAergic activity.

  • Author(s): Wu, Wu
  • Rahman, Mona N
  • Guo, Jun
  • Roy, Natalie
  • Xue, Lihua
  • Cahill, Catherine M
  • Zhang, Shetuan
  • Jia, Zongchao
  • et al.

Otoferlin, an integral membrane protein implicated in a late stage of exocytosis, has been reported to play a critical role in hearing although the underlying mechanisms remain elusive. However, its widespread tissue distribution infers a more ubiquitous role in synaptic vesicle trafficking. Glutamate, an excitatory neurotransmitter, is converted to its inhibitory counterpart, γ-aminobutyric acid (GABA), by L-glutamic acid decarboxylase (GAD), which exists in soluble (GAD67) and membrane-bound (GAD65) forms. For the first time, we have revealed a close association between otoferlin and GAD65 in both HEK293 and neuronal cells, including SH-SY5Y neuroblastoma and primary rat hippocampus cells, showing a direct interaction between GAD65 and otoferlin's C2 domains. In primary rat hippocampus cells, otoferlin and GAD65 co-localized in a punctate pattern within the cell body, as well as in the axon along the path of vesicular traffic. Significantly, GABA is virtually abolished in otoferlin-knockdown neuronal cells whereas otoferlin overexpression markedly increases endogenous GABA. GABA attenuation in otoferlin-knockdown primary cells is correlated with diminished L-type calcium current. This previously unknown and close correlation demonstrates that otoferlin, through GAD65, modulates GABAergic activity. The discovery of otoferlin-GAD65 functional coupling provides a new avenue for understanding the molecular mechanism by which otoferlin functions in neurological pathways.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View