- Main
Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties
Published Web Location
https://doi.org/10.1016/j.biomaterials.2015.03.016Abstract
Development of stem cell delivery system with ability of control over mutilineage differentiation and improved engraft efficiency is imperative in regenerative medicine. We herein report transfer stamping of human mesenchymal stem cells (hMSCs) patches using thermally expandable hydrogels with tunable cell-adhesive properties. The hydrogels were prepared from functionalized four arm copolymer of Tetronic(®), and the cell adhesion on the hydrogel was modulated by incorporation of fibronectin (FN) or cell-adhesive peptide (RGD). The resulting hydrogels showed spontaneous expansion in size within 10 min in response to the temperature reduction from 37 to 4°C. The adhesion and proliferation of hMSCs on FN-hydrogels were positively tunable in proportion to the amount of FN within hydrogels with complete monolayer of hMSCs (hMSC patch) being successfully achieved. The hMSC patch on the hydrogel was faced to the target substrate, which was then easily detached and re-attached to the target when the temperature was reduced from 37°C up to 4°C. We found that the transfer stamping of cell patch was facilitated at lower temperature of 4°C relative to 25°C, with the use of thinner hydrogels (0.5 mm in thickness relatively to 1.0 or 1.5 mm) and longer transfer time (>15 min). Notably, the hMSC patch was simply transferred from the hydrogel to the subcutaneous mouse skin tissue within 15 min with cold saline solution being dropped to the hydrogel. The hMSC patch following osteogenic or adipogenic commitment was also achieved with long-term culture of hMSCs on the hydrogel, which was successfully detached to the target surface. These results suggest that the hydrogels with thermally expandable and tunable cell-adhesive properties may serve as a universal substrate to harvest hMSC patch in a reliable and effective manner, which could potentially be utilized in many cell-sheet based therapeutic applications.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-