Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Mutation of chromatin regulators and focal hotspot alterations characterize human papillomavirus–positive oropharyngeal squamous cell carcinoma

Abstract

Background

Human papillomavirus (HPV)-associated oropharyngeal cancer is a disease clinically and biologically distinct from smoking-related head and neck squamous cell carcinoma (HNSCC). Despite its rapidly increasing incidence, the mutational landscape of HPV+ oropharyngeal squamous cell carcinoma (OPSCC) remains understudied.

Methods

This article presents the first mutational analysis of the 46 HPV+ OPSCC tumors within the newly expanded cohort of 530 HNSCC tumors from The Cancer Genome Atlas. A separate exome sequencing analysis was also performed for 46 HPV+ OPSCCs matched to their normal lymphocyte controls from the Johns Hopkins University cohort.

Results

There was a strikingly high 33% frequency of mutations within genes associated with chromatin regulation, including mutations in lysine methyltransferase 2C (KMT2C), lysine methyltransferase 2D (KMT2D), nuclear receptor binding SET domain protein 1 (NSD1), CREB binding protein (CREBBP), E1A-associated protein p300 (EP300), and CCCTC-binding factor (CTCF). In addition, the commonly altered genes phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PIK3CA) and fibroblast growth factor receptor 3 (FGFR3) showed distinct domain-specific hotspot mutations in comparison with their HPV- counterparts. PIK3CA showed a uniquely high rate of mutations within the helicase domain, and FGFR3 contained a predominance of hotspot S249C alterations that were not found in HPV- HNSCC.

Conclusions

This analysis represents one of the largest studies to date of HPV+ OPSCC and lends novel insight into the genetic landscape of this biologically distinct disease, including a high rate of mutations in histone- and chromatin-modifying genes, which may offer novel therapeutic targets.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View