Skip to main content
eScholarship
Open Access Publications from the University of California
Cover page of Extended Fayans energy density functional: optimization and analysis

Extended Fayans energy density functional: optimization and analysis

(2024)

The Fayans energy density functional (EDF) has been very successful in describing global nuclear properties (binding energies, charge radii, and especially differences of radii) within nuclear density functional theory. In a recent study, supervised machine learning methods were used to calibrate the Fayans EDF. Building on this experience, in this work we explore the effect of adding isovector pairing terms, which are responsible for different proton and neutron pairing fields, by comparing a 13D model without the isovector pairing term against the extended 14D model. At the heart of the calibration is a carefully selected heterogeneous dataset of experimental observables representing ground-state properties of spherical even-even nuclei. To quantify the impact of the calibration dataset on model parameters and the importance of the new terms, we carry out advanced sensitivity and correlation analysis on both models. The extension to 14D improves the overall quality of the model by about 30%. The enhanced degrees of freedom of the 14D model reduce correlations between model parameters and enhance sensitivity.

Cover page of Stochastic Trust-Region Algorithm in Random Subspaces with Convergence and Expected Complexity Analyses

Stochastic Trust-Region Algorithm in Random Subspaces with Convergence and Expected Complexity Analyses

(2024)

This work proposes a framework for large-scale stochastic derivative-free optimization (DFO) by introducing STARS, a trust-region method based on iterative minimization in random subspaces. This framework is both an algorithmic and theoretical extension of a random subspace derivative-free optimization (RSDFO) framework, and an algorithm for stochastic optimization with random models (STORM). Moreover, like RSDFO, STARS achieves scalability by minimizing interpolation models that approximate the objective in low-dimensional affine subspaces, thus significantly reducing per-iteration costs in terms of function evaluations and yielding strong performance on largescale stochastic DFO problems. The user-determined dimension of these subspaces, when the latter are defined, for example, by the columns of so-called Johnson-Lindenstrauss transforms, turns out to be independent of the dimension of the problem. For convergence purposes, inspired by the analyses of RSDFO and STORM, both a particular quality of the subspace and the accuracies of random function estimates and models are required to hold with sufficiently high, but fixed, probabilities. Using martingale theory under the latter assumptions, an almost sure global convergence of STARS to a first-order stationary point is shown, and the expected number of iterations required to reach a desired first-order accuracy is proved to be similar to that of STORM and other stochastic DFO algorithms, up to constants.

Stochastic minibatch approach to the ptychographic iterative engine

(2024)

The ptychographic iterative engine (PIE) is a widely used algorithm that enables phase retrieval at nanometer-scale resolution over a wide range of imaging experiment configurations. By analyzing diffraction intensities from multiple scanning locations where a probing wavefield interacts with a sample, the algorithm solves a difficult optimization problem with constraints derived from the experimental geometry as well as sample properties. The effectiveness at which this optimization problem is solved is highly dependent on the ordering in which we use the measured diffraction intensities in the algorithm, and random ordering is widely used due to the limited ability to escape from stagnation in poor-quality local solutions. In this study, we introduce an extension to the PIE algorithm that uses ideas popularized in recent machine learning training methods, in this case minibatch stochastic gradient descent. Our results demonstrate that these new techniques significantly improve the convergence properties of the PIE numerical optimization problem.

O'Hare Airport roadway traffic prediction via data fusion and Gaussian process regression

(2024)

This study proposes an approach of leveraging information gathered from multiple traffic data sources at different resolutions to obtain approximate inference on the traffic distribution of Chicago's O'Hare Airport area. Specifically, it proposes the ingestion of traffic datasets at different resolutions to build spatiotemporal models for predicting the distribution of traffic volume on the road network. Due to its good adaptability and flexibility for spatiotemporal data, the Gaussian process (GP) regression was employed to provide short-term forecasts using data collected by loop detectors (sensors) and supplemented by telematics data. The GP regression is used to make predictions of the distribution of the proportion of sensor data traffic volume represented by the telematics data for each location of the sensors. Consequently, the fitted GP model can be used to determine the approximate traffic distribution for a testing location outside of the training points. Policymakers in the transportation sector can find the results of this work helpful for making informed decisions relating to current and future transportation conditions in the area.

Stochastic average model methods

(2024)

We consider the solution of finite-sum minimization problems, such as those appearing in nonlinear least-squares or general empirical risk minimization problems. We are motivated by problems in which the summand functions are computationally expensive and evaluating all summands on every iteration of an optimization method may be undesirable. We present the idea of stochastic average model (SAM) methods, inspired by stochastic average gradient methods. SAM methods sample component functions on each iteration of a trust-region method according to a discrete probability distribution on component functions; the distribution is designed to minimize an upper bound on the variance of the resulting stochastic model. We present promising numerical results concerning an implemented variant extending the derivative-free model-based trust-region solver POUNDERS, which we name SAM-POUNDERS.

Cover page of A taxonomy of constraints in black-box simulation-based optimization

A taxonomy of constraints in black-box simulation-based optimization

(2024)

The types of constraints encountered in black-box simulation-based optimization problems differ significantly from those addressed in nonlinear programming. We introduce a characterization of constraints to address this situation. We provide formal definitions for several constraint classes and present illustrative examples in the context of the resulting taxonomy. This taxonomy, denoted KARQ, is useful for modeling and problem formulation, as well as optimization software development and deployment. It can also be used as the basis for a dialog with practitioners in moving problems to increasingly solvable branches of optimization.

Cover page of Constructing a Simulation Surrogate with Partially Observed Output

Constructing a Simulation Surrogate with Partially Observed Output

(2024)

Gaussian process surrogates are a popular alternative to directly using computationally expensive simulation models. When the simulation output consists of many responses, dimension-reduction techniques are often employed to construct these surrogates. However, surrogate methods with dimension reduction generally rely on complete output training data. This article proposes a new Gaussian process surrogate method that permits the use of partially observed output while remaining computationally efficient. The new method involves the imputation of missing values and the adjustment of the covariance matrix used for Gaussian process inference. The resulting surrogate represents the available responses, disregards the missing responses, and provides meaningful uncertainty quantification. The proposed approach is shown to offer sharper inference than alternatives in a simulation study and a case study where an energy density functional model that frequently returns incomplete output is calibrated.