Skip to main content
eScholarship
Open Access Publications from the University of California

Stochastic average model methods

Published Web Location

https://arxiv.org/pdf/2207.06305
No data is associated with this publication.
Abstract

We consider the solution of finite-sum minimization problems, such as those appearing in nonlinear least-squares or general empirical risk minimization problems. We are motivated by problems in which the summand functions are computationally expensive and evaluating all summands on every iteration of an optimization method may be undesirable. We present the idea of stochastic average model (SAM) methods, inspired by stochastic average gradient methods. SAM methods sample component functions on each iteration of a trust-region method according to a discrete probability distribution on component functions; the distribution is designed to minimize an upper bound on the variance of the resulting stochastic model. We present promising numerical results concerning an implemented variant extending the derivative-free model-based trust-region solver POUNDERS, which we name SAM-POUNDERS.

Item not freely available? Link broken?
Report a problem accessing this item