Skip to main content
eScholarship
Open Access Publications from the University of California

About

The Department of Neurology, University of California, Davis is composed of a diverse faculty engaged in research on neurological disorders and fundamental neuroscience. Areas of strength in the department are in neurological therapeutics, epilepsy, cognitive neuroscience, dementias, neuromuscular disorders, Huntington's disease and multiple sclerosis.

Faculty in the Department of Neurology are situated on the UC Davis medical campus in Sacramento (in the Lawrence J. Ellison Ambulatory Care Center and at the M.I.N.D. Institute); at the UC Davis Center for Neuroscience and at the Center for Mind and Brain in Davis; and at the Department of Veterans Affairs Northern California Health Care System in Martinez.

Michael A. Rogawski, Chair
University of California, Davis
4860 Y Street, Suite 3700
Sacramento CA 95817

Department of Neurology, UC Davis School of Medicine

There are 200 publications in this collection, published between 1991 and 2021.
Open Access Policy Deposits (196)

Episodic memory performance in a multi-ethnic longitudinal study of 13,037 elderly.

Age-related changes in memory are not uniform, even in the absence of dementia. Characterization of non-disease associated cognitive changes is crucial to gain a more complete understanding of brain aging. Episodic memory was investigated in 13,037 ethnically diverse elderly (ages 72 to 85 years) with two to 15 years of follow-up, and with known dementia status, age, sex, education, and APOE genotypes. Adjusted trajectories of episodic memory performance over time were estimated using Latent Class Mixed Models. Analysis was conducted using two samples at baseline evaluation: i) non-cognitively impaired individuals, and ii) all individuals regardless of dementia status. We calculated the age-specific annual incidence rates of dementia in the non-demented elderly (n = 10,220). Two major episodic memory trajectories were estimated: 1) Stable-consisting of individuals exhibiting a constant or improved memory function, and 2) Decliner-consisting of individuals whose memory function declined. The majority of the study participants maintain their memory performance over time. Compared to those with Stable trajectory, individuals characterized as Decliners were more likely to have non-white ethnic background, fewer years of education, a higher frequency of ε4 allele at APOE gene and five times more likely to develop dementia. The steepest decline in episodic memory was observed in Caribbean-Hispanics compared to non-Hispanic whites (p = 4.3 x 10(-15)). The highest incident rates of dementia were observed in the oldest age group, among those of Caribbean-Hispanics ancestry and among Decliners who exhibited rates five times higher than those with Stable trajectories (11 per 100 person-years versus 3 per 100 person-years. Age, education, ethnic background and APOE genotype influence the maintenance of episodic memory. Declining memory is one of the strongest predictors of incident dementia.

Alternative Splicing of Putative Stroke/Vascular Risk Factor Genes Expressed in Blood Following Ischemic Stroke Is Sexually Dimorphic and Cause-Specific.

Genome-wide association studies have identified putative ischemic stroke risk genes, yet, their expression after stroke is unexplored in spite of growing interest in elucidating their specific role and identifying candidate genes for stroke treatment. Thus, we took an exploratory approach to investigate sexual dimorphism, alternative splicing, and etiology in putative risk gene expression in blood following cardioembolic, atherosclerotic large vessel disease and small vessel disease/lacunar causes of ischemic stroke in each sex compared to controls. Whole transcriptome arrays assessed 71 putative stroke/vascular risk factor genes for blood RNA expression at gene-, exon-, and alternative splicing-levels. Male (n = 122) and female (n = 123) stroke and control volunteers from three university medical centers were matched for race, age, vascular risk factors, and blood draw time since stroke onset. Exclusion criteria included: previous stroke, drug abuse, subarachnoid or intracerebral hemorrhage, hemorrhagic transformation, infection, dialysis, cancer, hematological abnormalities, thrombolytics, anticoagulants or immunosuppressants. Significant differential gene expression (fold change > |1.2|, p < 0.05, partial correlation > |0.4|) and alternative splicing (false discovery rate p < 0.3) were assessed. At gene level, few were differentially expressed: ALDH2, ALOX5AP, F13A1, and IMPA2 (males, all stroke); ITGB3 (females, cardioembolic); ADD1 (males, atherosclerotic); F13A1, IMPA2 (males, lacunar); and WNK1 (females, lacunar). GP1BA and ITGA2B were alternatively spliced in both sexes (all patients vs. controls). Six genes in males, five in females, were alternatively spliced in all stroke compared to controls. Alternative splicing and exon-level analyses associated many genes with specific etiology in either sex. Of 71 genes, 70 had differential exon-level expression in stroke patients compared to control subjects. Among stroke patients, 24 genes represented by differentially expressed exons were male-specific, six were common between sexes, and two were female-specific. In lacunar stroke, expression of 19 differentially expressed exons representing six genes (ADD1, NINJ2, PCSK9, PEMT, SMARCA4, WNK1) decreased in males and increased in females. Results demonstrate alternative splicing and sexually dimorphic expression of most putative risk genes in stroke patients' blood. Since expression was also often cause-specific, sex, and etiology are factors to consider in stroke treatment trials and genetic association studies as society trends toward more personalized medicine.

Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β.

Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation.

193 more worksshow all
Recent Work (5)

Epilepsy-Associated Dysfunction in the Voltage-Gated Neuronal Sodium Channel SCN1A

Mutations in SCN1A, the gene encoding the brain voltage-gated sodium channel subunit (NaV1.1) are associated with at least two forms of epilepsy, generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). We examined the functional properties of four GEFS+ alleles and one SMEI allele using whole-cell patch-clamp analysis of heterologously expressed recombinant human SCN1A. One previously reported GEFS+ mutation (I1656M) and an additional novel allele (R1657C), both affecting residues in a voltage-sensing S4 segment, exhibited a similar depolarizing shift in the voltage dependence of activation. Additionally, R1657C showed a 50% reduction in current density and accelerated recovery from slow inactivation. Unlike three other GEFS+ alleles that we recently characterized, neither R1657C nor I1656M gave rise to a persistent, noninactivating current. In contrast, two other GEFS+ mutations (A1685V and V1353L) and L986F, an SMEI-associated allele, exhibited complete loss of function. In conclusion, our data provide evidence for a wide spectrum of sodium channel dysfunction in familial epilepsy and demonstrate that both GEFS+ and SMEI can be associated with nonfunctional SCN1A alleles.

What Clinical Observations on the Epidemiology of Antiepileptic Drug Intractability Tell Us About the Mechanisms of Pharmacoresistance

In the past several years, there have been important advances in the clinical epidemiology of antiepileptic drug resistance, as reviewed by Mohanraj and Brodie. It would appear that by and large, intractability is independent of the choice of antiepileptic drug (AED). Many patients will become seizure free on the first agent tried, irrespective of which one their physician decides to pick. Nonresponders to the first drug are in a different category: it is likely that they will continue to have seizures no matter which medicine or combination of medicines is tried. This simple clinical observation puts important constraints on the possible biological mechanisms for pharmacoresistance. In this essay, I consider the implications of the new clinical research for studies on the neurobiological mechanisms of AED intractability.

New Molecular Targets for Antiepileptic Drugs: alpha2delta, SV2A and Kv7/KCNQ/M Potassium Channels

Many currently prescribed antiepileptic drugs (AEDs) act via voltage-gated sodium channels, through effects on -aminobutyric acid–mediated inhibition, or via voltage-gated calcium channels. Some newer AEDs do not act via these traditional mechanisms. The molecular targets for several of these nontraditional AEDs have been defined using cellular electrophysiology and molecular approaches. Here, we describe three of these targets: 2, auxiliary subunits of voltage-gated calcium channels through which the gabapentinoids gabapentin and pregabalin exert their anticonvulsant and analgesic actions; SV2A, a ubiquitous synaptic vesicle glycoprotein that may prepare vesicles for fusion and serves as the target for levetiracetam and its analog brivaracetam (which is currently in late-stage clinical development); and Kv7/KCNQ/M potassium channels that mediate the M-current, which acts a brake on repetitive firing and burst generation and serves as the target for the investigational AEDs retigabine and ICA-105665. Functionally, all of the new targets modulate neurotransmitter output at synapses, focusing attention on presynaptic terminals as critical sites of action for AEDs.

2 more worksshow all