Chemical and Biomolecular Engineering
Chemical and Biomolecular Engineering - Open Access Policy Deposits (936)
Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue
Maximizing the speed and efficiency at which single cells can be liberated from tissues would dramatically advance cell-based diagnostics and therapies. Conventional methods involve numerous manual processing steps and long enzymatic digestion times, yet are still inefficient. In previous work, we developed a microfluidic device with a network of branching channels to improve the dissociation of cell aggregates into single cells. However, this device was not tested on tissue specimens, and further development was limited by high cost and low feature resolution. In this work, we utilized a single layer, laser micro-machined polyimide film as a rapid prototyping tool to optimize the design of our microfluidic channels to maximize dissociation efficiency. This resulted in a new design with smaller dimensions and a shark fin geometry, which increased recovery of single cells from cancer cell aggregates. We then tested device performance on mouse kidney tissue, and found that optimal results were obtained using two microfluidic devices in series, the larger original design followed by the new shark fin design as a final polishing step. We envision our microfluidic dissociation devices being used in research and clinical settings to generate single cells from various tissue specimens for diagnostic and therapeutic applications.
Structures and Electronic Properties of Domain Walls in BiFeO3 Thin Films
Domain walls (DWs) in ferroelectrics are atomically sharp and can be created, erased, and reconfigured within the same physical volume of ferroelectric matrix by external electric fields. They possess a myriad of novel properties and functionalities that are absent in the bulk of the domains, and thus could become an essential element in next-generation nanodevices based on ferroelectrics. The knowledge about the structure and properties of ferroelectric DWs not only advances the fundamental understanding of ferroelectrics, but also provides guidance for the design of ferroelectric-based devices. In this article, we provide a review of structures and properties of DWs in one of the most widely studied ferroelectric systems, BiFeO3 thin films. We correlate their conductivity and photovoltaic properties to the atomic-scale structure and dynamic behaviors of DWs.
Micro- and Nanopatterned Topographical Cues for Regulating Macrophage Cell Shape and Phenotype
Controlling the interactions between macrophages and biomaterials is critical for modulating the response to implants. While it has long been thought that biomaterial surface chemistry regulates the immune response, recent studies have suggested that material geometry may in fact dominate. Our previous work demonstrated that elongation of macrophages regulates their polarization toward a pro-healing phenotype. In this work, we elucidate how surface topology might be leveraged to alter macrophage cell morphology and polarization state. Using a deep etch technique, we fabricated titanium surfaces containing micro- and nanopatterned grooves, which have been previously shown to promote cell elongation. Morphology, phenotypic markers, and cytokine secretion of murine bone marrow derived macrophages on different groove widths were analyzed. The results suggest that micro- and nanopatterned grooves influenced macrophage elongation, which peaked on substrates with 400-500 nm wide grooves. Surface grooves did not affect inflammatory activation but drove macrophages toward an anti-inflammatory, pro-healing phenotype. While secretion of TNF-alpha remained low in macrophages across all conditions, macrophages secreted significantly higher levels of anti-inflammatory cytokine, IL-10, on intermediate groove widths compared to cells on other Ti surfaces. Our findings highlight the potential of using surface topography to regulate macrophage function, and thus control the wound healing and tissue repair response to biomaterials.