Mechanical and Aerospace Engineering
Mechanical and Aerospace Engineering - Open Access Policy Deposits (870)
Response of a Model Gas Turbine Combustor to Variation in Gaseous Fuel Composition
The effect of fuel composition on performance is evaluated on a model gas turbine combustor designed to mimic key features of practical devices. A flexible fuel injection system is utilized to control the placement of the fuel in the device to allow exploration and evaluation of fuel distribution effects in addition to chemistry effects. Gas blends reflecting the extremes in compositions found in the U.S. are considered. The results illustrate that, for the conditions and configuration studied, both fuel chemistry and fuel air mixing play a role in the performance of the device. While chemistry appears to be the predominant factor in stability, a role is noted in emissions performance as well. It is also found that changes in fuel distribution associated with changes in fuel momentum for fixed firing rate also have an impact on emissions. For the system considered, a strategy for sustaining optimal performance while fuel composition changes is illustrated.
Impact of Ethane and Propane Variation in Natural Gas on the Performance of a Model Gas Turbine Combustor
In the area of stationary power generation, there exists a growing interest in understanding the role that gaseous fuel composition plays on the performance of natural gas-fired gas turbine systems. In this study, an atmospherically fired model gas turbine combustor with a fuel flexible fuel/air premixer is employed to investigate the impact of significant amounts of ethane and propane addition into a baseline natural gas fuel supply. The impacts of these various fuel compositions, in terms of the emissions of NOx and CO, and the coupled impact of the degree of fuel/air mixing, are captured explicitly for the present system by means of a statistically oriented testing methodology. These explicit expressions are also compared to emissions maps that encompass and expand beyond the statistically based test matrix to verify the validity of the employed statistical approach.
Rapid Liquid Fuel Mixing for Lean-Burning Combustors: Low-Power Performance
Designers of advanced gas turbine combustors are considering lean direct injection strategies to achieve low NOx emission levels. In the present study, the performance of a multipoint radial airblast fuel injector Lean Burn injector (LBI) is explored for various conditions that target low-power gas turbine engine operation. Reacting tests were conducted in a model can combustor at 4 and 6.6 atm, and at a dome air preheat temperature of 533 K, using Jet-A as the liquid fuel. Emissions measurements were made at equivalence ratios between 0.37 and 0.65. The pressure drop across the airblast injector holes was maintained at 3 and 7-8 percent. The results indicate that the LBI performance for the conditions considered is not sufficiently predicted by existing emissions correlations. In addition, NOx performance is impacted by atomizing air flows, suggesting that droplet size is critical even at the expense of penetration to the wall opposite the injector. The results provide a baseline from which to optimize the performance of the LBI for low-power operation.