Skip to main content
eScholarship
Open Access Publications from the University of California

About

The Department of Earth System Science (ESS) focuses on how the atmosphere, land, and oceans interact as a system, and how the Earth will change over a human lifetime.

Department of Earth System Science

There are 3709 publications in this collection, published between 1966 and 2024.
Faculty Publications (3708)

Evaluating the streamflow simulation capability of PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau

On the Tibetan Plateau, the limited ground-based rainfall information owing to a harsh environment has brought great challenges to hydrological studies. Satellite-based rainfall products, which allow for a better coverage than both radar network and rain gauges on the Tibetan Plateau, can be suitable alternatives for studies on investigating the hydrological processes and climate change. In this study, a newly developed daily satellite-based precipitation product, termed Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), is used as input for a hydrologic model to simulate streamflow in the upper Yellow and Yangtze River basins on the Tibetan Plateau. The results show that the simulated streamflows using PERSIANN-CDR precipitation and the Global Land Data Assimilation System (GLDAS) precipitation are closer to observation than that using limited gauge-based precipitation interpolation in the upper Yangtze River basin. The simulated streamflow using gauge-based precipitation are higher than the streamflow observation during the wet season. In the upper Yellow River basin, gauge-based precipitation, GLDAS precipitation, and PERSIANN-CDR precipitation have similar good performance in simulating streamflow. The evaluation of streamflow simulation capability in this study partly indicates that the PERSIANN-CDR rainfall product has good potential to be a reliable dataset and an alternative information source of a limited gauge network for conducting long-term hydrological and climate studies on the Tibetan Plateau.

The Distinct Contributions of the Seasonal Footprinting and Charged‐Discharged Mechanisms to ENSO Complexity

This study finds the seasonal footprinting (SF) mechanism to be a key source of El Niño–Southern Oscillation (ENSO) complexity, whereas the charged-discharged (CD) mechanism acts to reduce complexity. The CD mechanism forces El Niño and La Niña to follow each other, resulting in a more cyclic and less complex ENSO evolution, while the SF mechanism involves subtropical forcing and results in an ENSO evolution that is more episodic and irregular. The SF mechanism also has a tendency to produce multiyear La Niña events but not multiyear El Niño events, contributing to El Niño-La Niña asymmetries. The strength of CD mechanism has been steady, but SF mechanism has intensified during the past two decades, making ENSO more complicated. Most Climate Model Intercomparison Project version 5 models overestimate the strength of the CD mechanism but underestimate the strength of the SF mechanism, causing their simulated ENSOs to be too regular and symmetric.

Chapter 1 Impacts of the Oceans on Climate Change

The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea-level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up approximately 40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean 'carbon pumps' (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice-ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

3705 more worksshow all