Skip to main content
eScholarship
Open Access Publications from the University of California

Department of Earth, Planetary, and Space Sciences

There are 225 publications in this collection, published between 1992 and 2021.
Recent Works (225)

Relative contributions of large-scale and wedgelet currents in the substorm current wedge.

We examined how much large-scale and localized upward and downward currents contribute to the substorm current wedge (SCW), and how they evolve over time, using the THEMIS all-sky imagers (ASIs) and ground magnetometers. One type of events is dominated by a single large-scale wedge, with upward currents over the surge and broad downward currents poleward-eastward of the surge. The other type of events is a composite of large-scale wedge and wedgelets associated with streamers, with each wedgelet having comparable intensity to the large-scale wedge currents. Among 17 auroral substorms with wide ASI coverage, the composite current type is more frequent than the single large-scale wedge type. The dawn-dusk size of each wedgelet is ~ 600 km in the ionosphere (~ 3.2 R E in the magnetotail, comparable to the flow channel size). We suggest that substorms have more than one type of SCW, and the composite current type is more frequent.

Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices.

On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.

222 more worksshow all