Skip to main content
eScholarship
Open Access Publications from the University of California

Recent Works

Cover page of The ELFIN Mission

The ELFIN Mission

(2020)

The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (~93deg inclination), nearly circular, low-Earth (~450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss cone bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (~90min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50keV to 5MeV electrons with deltaE/E<40% and a fluxgate magnetometer (FGM) on a ~72cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5Hz Nyquist (nominally) with <0.3nT/sqrt(Hz) noise at 1Hz. The spinning satellites (T_spin~3s) are equipped with magnetorquers that permit spin-up/down and reorientation maneuvers. The spin axis is placed normal to the orbit plane, allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250keV-5MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018.

Cover page of Yarkovsky Drift Detections for 247 Near-Earth Asteroids

Yarkovsky Drift Detections for 247 Near-Earth Asteroids

(2020)

The Yarkovsky effect is a thermal process acting upon the orbits of small celestial bodies, which can cause these orbits to slowly expand or contract with time. The effect is subtle (da/dt ~ 10^-4 au/My for a 1 km diameter object) and is thus generally difficult to measure. We analyzed both optical and radar astrometry for 600 near-Earth asteroids (NEAs) for the purpose of detecting and quantifying the Yarkovsky effect. We present 247 NEAs with measured drift rates, which is the largest published set of Yarkovsky detections. This large sample size provides an opportunity to examine the Yarkovsky effect in a statistical manner. In particular, we describe two independent population-based tests that verify the measurement of Yarkovsky orbital drift. First, we provide observational confirmation for the Yarkovsky effect's theoretical size dependence of 1/D, where D is diameter. Second, we find that the observed ratio of negative to positive drift rates in our sample is 2.34, which, accounting for bias and sampling uncertainty, implies an actual ratio of $2.7^{+0.3}_{-0.7}$. This ratio has a vanishingly small probability of occurring due to chance or statistical noise. The observed ratio of retrograde to prograde rotators is two times lower than the ratio expected from numerical predictions from NEA population studies and traditional assumptions about the sense of rotation of NEAs originating from various main belt escape routes. We also examine the efficiency with which solar energy is converted into orbital energy and find a median efficiency in our sample of 12%. We interpret this efficiency in terms of NEA spin and thermal properties.

Cover page of Electrostatic Turbulence and Debye-scale Structures in Collisionless Shocks

Electrostatic Turbulence and Debye-scale Structures in Collisionless Shocks

(2020)

© 2020. The American Astronomical Society. All rights reserved.. We present analysis of more than 100 large-amplitude bipolar electrostatic structures in a quasi-perpendicular supercritical Earth's bow shock crossing, measured by the Magnetospheric Multiscale spacecraft. The occurrence of the bipolar structures is shown to be tightly correlated with magnetic field gradients in the shock transition region. The bipolar structures have negative electrostatic potentials and spatial scales of a few Debye lengths. The bipolar structures propagate highly oblique to the shock normal with velocities (in the plasma rest frame) of the order of the ion-acoustic velocity. We argue that the bipolar structures are ion phase space holes produced by the two-stream instability between incoming and reflected ions. This is the first identification of the ion two-stream instability in collisionless shocks.

Cover page of Electron Bernstein waves driven by electron crescents near the electron diffusion region.

Electron Bernstein waves driven by electron crescents near the electron diffusion region.

(2020)

The Magnetospheric Multiscale (MMS) spacecraft encounter an electron diffusion region (EDR) of asymmetric magnetic reconnection at Earth's magnetopause. The EDR is characterized by agyrotropic electron velocity distributions on both sides of the neutral line. Various types of plasma waves are produced by the magnetic reconnection in and near the EDR. Here we report large-amplitude electron Bernstein waves (EBWs) at the electron-scale boundary of the Hall current reversal. The finite gyroradius effect of the outflow electrons generates the crescent-shaped agyrotropic electron distributions, which drive the EBWs. The EBWs propagate toward the central EDR. The amplitude of the EBWs is sufficiently large to thermalize and diffuse electrons around the EDR. The EBWs contribute to the cross-field diffusion of the electron-scale boundary of the Hall current reversal near the EDR.

Cover page of Landslides on Ceres: Diversity and Geologic Context.

Landslides on Ceres: Diversity and Geologic Context.

(2019)

Landslides are among the most widespread geologic features on Ceres. Using data from Dawn's Framing Camera, landslides were previously classified based upon geomorphologic characteristics into one of three archetypal categories, Type 1(T1), Type 2 (T2), and Type 3 (T3). Due to their geologic context, variation in age, and physical characteristics, most landslides on Ceres are, however, intermediate in their morphology and physical properties between the archetypes of each landslide class. Here we describe the varied morphology of individual intermediate landslides, identify geologic controls that contribute to this variation, and provide first-order quantification of the physical properties of the continuum of Ceres's surface flows. These intermediate flows appear in varied settings and show a range of characteristics, including those found at contacts between craters, those having multiple trunks or lobes; showing characteristics of both T2 and T3 landslides; material slumping on crater rims; very small, ejecta-like flows; and those appearing inside of catenae. We suggest that while their morphologies can vary, the distribution and mechanical properties of intermediate landslides do not differ significantly from that of archetypal landslides, confirming a link between landslides and subsurface ice. We also find that most intermediate landslides are similar to Type 2 landslides and formed by shallow failure. Clusters of these features suggest ice enhancement near Juling, Kupalo and Urvara craters. Since the majority of Ceres's landslides fall in the intermediate landslide category, placing their attributes in context contributes to a better understanding of Ceres's shallow subsurface and the nature of ground ice.

Cover page of The mean rotation rate of Venus from 29 years of Earth-based radar observations

The mean rotation rate of Venus from 29 years of Earth-based radar observations

(2019)

© 2019 Elsevier Inc. We measured the length of the Venus sidereal day (LOD) from Earth-based radar observations collected from 1988 to 2017, using offsets in surface feature longitudes from a prediction based on a 243.0185d period derived from analysis of Magellan mission images over a 487-day interval. We derive a mean LOD over 29 years of 243.0212 ± 0.0006d. Our result is consistent with earlier estimates (but with smaller uncertainties), including those based on offsets between Venus Express infrared mapping data and Magellan topography that suggest a mean LOD of 243.0228 ± 0.002d over a 16-year interval. We cannot detect subtle, short-term oscillations in rate, but the derived value provides an excellent fit to observational data over a 29-year period that can be used for future landing-site planning.

Cover page of Origin of two-band chorus in the radiation belt of Earth.

Origin of two-band chorus in the radiation belt of Earth.

(2019)

Naturally occurring chorus emissions are a class of electromagnetic waves found in the space environments of the Earth and other magnetized planets. They play an essential role in accelerating high-energy electrons forming the hazardous radiation belt environment. Chorus typically occurs in two distinct frequency bands separated by a gap. The origin of this two-band structure remains a 50-year old question. Here we report, using NASA's Van Allen Probe measurements, that banded chorus waves are commonly accompanied by two separate anisotropic electron components. Using numerical simulations, we show that the initially excited single-band chorus waves alter the electron distribution immediately via Landau resonance, and suppress the electron anisotropy at medium energies. This naturally divides the electron anisotropy into a low and a high energy components which excite the upper-band and lower-band chorus waves, respectively. This mechanism may also apply to the generation of chorus waves in other magnetized planetary magnetospheres.

Cover page of The radio search for technosignatures in the decade 2020-2030

The radio search for technosignatures in the decade 2020-2030

(2019)

Advancing the scientific frontier in the search for life in the universe requires support of searches for both biosignatures and technosignatures. A modest budgetary increment can expand the search for life in the universe from primitive to complex life and from the solar neighborhood to the entire Galaxy.

Cover page of Planetary Bistatic Radar

Planetary Bistatic Radar

(2019)

Planetary radar observations offer the potential for probing the properties of characteristics of solid bodies throughout the inner solar system and at least as far as the orbit of Saturn. In addition to the direct scientific value, precise orbital determinations can be obtained from planetary radar observations, which are in turn valuable for mission planning or spacecraft navigation and planetary defense. The next-generation Very Large Array would not have to be equipped with a transmitter to be an important asset in the world's planetary radar infrastructure. Bistatic radar, in which one antenna transmits (e.g., Arecibo or Goldstone) and another receives, are used commonly today, with the Green Bank Telescope (GBT) serving as a receiver. The improved sensitivity of the ngVLA relative to the GBT would improve the signal-to-noise ratios on many targets and increase the accessible volume specifically for asteroids. Goldstone-ngVLA bistatic observations would have the potential of rivaling the sensitivity of Arecibo, but with much wider sky access.