Preface
The weakly ionized plasma in the Earths ionosphere is controlled by a complex interplay between solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics from within. This interaction results in ionosphere structuring and variability that pose major challenges for accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space weather research. The ionospheric structuring and variability are often probed using the total electron content (TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique modulation pattern has been linked to magnetospheric ultra-low-frequency (ULF) waves, yet its underlying mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and a ground-based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are driven by magnetospheric electron precipitation induced by ULF-modulated whistler-mode waves. We observed peak-to-peak dTEC amplitudes reaching ∼ 0.5 TECU (1 TECU is equal to 10 6 electrons/ m 2 ) with modulations spanning scales of ∼ 5-100 km. The cross-correlation between our modeled and observed dTEC reached ∼ 0.8 during the conjugacy period but decreased outside of it. The spectra of whistler-mode waves and dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our findings elucidate the high-latitude dTEC generation from magnetospheric wave-induced precipitation, addressing a significant gap in current physics-based dTEC modeling. Theses results thus improve ionospheric dTEC prediction and enhance our understanding of magnetosphere-ionosphere coupling via ULF waves.
In this study, we analyse ‘magneto-Stokes’ flow, a fundamental magnetohydrodynamic (MHD) flow that shares the cylindrical-annular geometry of the Taylor–Couette cell but uses applied electromagnetic forces to circulate a free-surface layer of electrolyte at low Reynolds numbers. The first complete, analytical solution for time-dependent magneto-Stokes flow is presented and validated with coupled laboratory and numerical experiments. Three regimes are distinguished (shallow-layer, transitional and deep-layer flow regimes), and their influence on the efficiency of microscale mixing is clarified. The solution in the shallow-layer limit belongs to a newly identified class of MHD potential flows, and thus induces mixing without the aid of axial vorticity. We show that these shallow-layer magneto-Stokes flows can still augment mixing in distinct Taylor dispersion and advection-dominated mixing regimes. The existence of enhanced mixing across all three distinguished flow regimes is predicted by asymptotic scaling laws and supported by three-dimensional numerical simulations. Mixing enhancement is initiated with the least electromagnetic forcing in channels with order-unity depth-to-gap-width ratios. If the strength of the electromagnetic forcing is not a constraint, then shallow-layer flows can still yield the shortest mixing times in the advection-dominated limit. Our robust description of momentum evolution and mixing of passive tracers makes the annular magneto-Stokes system fit for use as an MHD reference flow.
Abstract: The local scale of rotating convection, ℓ, is a fundamental parameter in many turbulent geophysical and astrophysical fluid systems, yet it is often poorly constrained. Here we conduct rotating convection laboratory experiments analogous to convecting flows in planetary cores and subsurface oceans to obtain measurements of the local scales of motion. Utilizing silicone oil as the working fluid, we employ shadowgraph imagery to visualize the flow, from which we extract values of the characteristic cross‐axial scale of convective columns and plumes. These measurements are compared to the theoretical values of the critical onset length scale, ℓcrit, and the turbulent length scale, ℓturb. Our experimentally obtained length scale measurements simultaneously agree with both the onset and turbulent scale predictions across three orders of magnitude in convective supercriticality , a correlation that is consistent with inferences made in prior studies. We further explore the nature of this correlation and its implications for geophysical and astrophysical systems.
Abstract: Faustini crater (41 km diameter) hosts a large (664 km2) permanently shadowed region (PSR) with a high potential to harbor water-ice deposits. One of the 13 candidate Artemis III landing areas contains a portion of the crater rim and proximal ejecta. The ShadowCam instrument aboard the Korea Pathfinder Lunar Orbiter provides detailed images of the PSR within Faustini. We characterize the terrain and thermal environment within the Faustini PSR from ShadowCam images, Lunar Reconnaissance Orbiter thermal measurements and laser ranging, and thermal modeling. Our mapping revealed three distinct areas of the floor of Faustini based on elevations, slopes, and surface roughness. These units broadly correlate with temperatures; thus, they may be influenced by variations in volatile sublimation. Crater retention and topographic diffusion rates appear to be asymmetric across the floor, likely due to differences in maximum and average temperatures. Several irregular depressions and a pronounced lobate-rim crater are consistent with subsurface ice. However, differences in the thicknesses of deposited materials on the floor may also explain the asymmetry. Additionally, zones of elevated surface roughness across Faustini appear to result from overprinted crater ray segments, possibly from Tycho and Jackson craters. Mass wasting deposits and pitting on opposite sides of the crater wall may have resulted from the low-angle delivery of material ejected by the Shackleton crater impact event, suggesting that the Artemis III candidate landing region named “Faustini Rim A” will contain material from Shackleton.
Investigating the habitability of ocean worlds is a priority of current and future NASA missions. The Europa Clipper mission will conduct approximately 50 flybys of Jupiters moon Europa, returning a detailed portrait of its interior from the synthesis of data from its instrument suite. The magnetometer on board has the capability of decoupling Europas induced magnetic field to high precision, and when these data are inverted, the electrical conductivity profile from the electrically conducting subsurface salty ocean may be constrained. To optimize the interpretation of magnetic induction data near ocean worlds and constrain salinity from electrical conductivity, accurate laboratory electrical conductivity data are needed under the conditions expected in their subsurface oceans. At the high-pressure, low-temperature (HPLT) conditions of icy worlds, comprehensive conductivity data sets are sparse or absent from either laboratory data or simulations. We conducted molecular dynamics simulations of candidate ocean compositions of aqueous NaCl under HPLT conditions at multiple concentrations. Our results predict electrical conductivity as a function of temperature, pressure, and composition, showing a decrease in conductivity as the pressure increases deeper into the interior of an icy moon. These data can guide laboratory experiments at conditions relevant to icy moons and can be used in tandem to forward-model the magnetic induction signals at ocean worlds and compare with future spacecraft data. We discuss implications for the Europa Clipper mission.
The shape of the ocean floor (bathymetry) and the overlaying sediments provide the largest carbon sink throughout Earths history, supporting ~one to two orders of magnitude more carbon storage than the oceans and atmosphere combined. While accumulation and erosion of these sediments are bathymetry dependent (e.g., due to pressure, temperature, salinity, ion concentration, and available productivity), no systemic study has quantified how global and basin scale bathymetry, controlled by the evolution of tectonics and mantle convection, affects the long-term carbon cycle. We reconstruct bathymetry spanning the last 80 Myr to describe steady-state changes in ocean chemistry within the Earth system model LOSCAR. We find that both bathymetry reconstructions and representative synthetic tests show that ocean alkalinity, calcite saturation state, and the carbonate compensation depth (CCD) are strongly dependent on changes in shallow bathymetry (ocean floor ≤600 m) and on the distribution of the deep marine regions (>1,000 m). Limiting Cenozoic evolution to bathymetry alone leads to predicted CCD variations spanning 500 m, 33 to 50% of the total observed variations in the paleoproxy records. Our results suggest that neglecting bathymetric changes leads to significant misattribution to uncertain carbon cycle parameters (e.g., atmospheric CO2 and water column temperature) and processes (e.g., biological pump efficiency and silicate-carbonate riverine flux). To illustrate this point, we use our updated bathymetry for an Early Paleogene C cycle case study. We obtain carbonate riverine flux estimates that suggest a reversal of the weathering trend with respect to present-day, contrasting with previous studies, but consistent with proxy records and tectonic reconstructions.
Rates of microbial processes are fundamental to understanding the significance of microbial impacts on environmental chemical cycling. However, it is often difficult to quantify rates or to link processes to specific taxa or individual cells, especially in environments where there are few cultured representatives with known physiology. Here, we describe the use of the redox-enzyme-sensitive molecular probe RedoxSensor™ Green to measure rates of anaerobic electron transfer physiology (i.e., sulfate reduction and methanogenesis) in individual cells and link those measurements to genomic sequencing of the same single cells. We used this method to investigate microbial activity in hot, anoxic, low-biomass (~103 cells mL-1) groundwater of the Death Valley Regional Flow System, California. Combining this method with electron donor amendment experiments and metatranscriptomics confirmed that the abundant spore formers including Candidatus Desulforudis audaxviator were actively reducing sulfate in this environment, most likely with acetate and hydrogen as electron donors. Using this approach, we measured environmental sulfate reduction rates at 0.14 to 26.9 fmol cell-1 h-1. Scaled to volume, this equates to a bulk environmental rate of ~103 pmol sulfate L-1 d-1, similar to potential rates determined with radiotracer methods. Despite methane in the system, there was no evidence for active microbial methanogenesis at the time of sampling. Overall, this method is a powerful tool for estimating species-resolved, single-cell rates of anaerobic metabolism in low-biomass environments while simultaneously linking genomes to phenomes at the single-cell level. We reveal active elemental cycling conducted by several species, with a large portion attributable to Ca. Desulforudis audaxviator.
Abstract: Parker Solar Probe observations reveal that the near-Sun space is almost filled with magnetic switchbacks (“switchbacks” hereinafter), which may be a major contributor to the heating and acceleration of solar wind. Here, for the first time, we develop an analytic model of an axisymmetric switchback with uniform magnetic field strength. In this model, three parameters control the geometry of the switchback: height (length along the background magnetic field), width (thickness along radial direction perpendicular to the background field), and the radial distance from the center of switchback to the central axis, which is a proxy of the size of the switchback along the third dimension. We carry out 3D magnetohydrodynamic simulations to investigate the dynamic evolution of the switchback. Comparing simulations conducted with compressible and incompressible codes, we verify that compressibility, i.e., parametric decay instability, is necessary for destabilizing the switchback. Our simulations also reveal that the geometry of the switchback significantly affects how fast the switchback destabilizes. The most stable switchbacks are 2D-like (planar) structures with large aspect ratios (length to width), consistent with the observations. We show that when plasma beta (β) is smaller than one, the switchback is more stable as β increases. However, when β is greater than 1, the switchback becomes very unstable as the pattern of the growing compressive fluctuations changes. Our results may explain some of the observational features of switchbacks, including the large aspect ratios and nearly constant occurrence rates in the inner heliosphere.
Abstract: The contrasting internal luminosity of Uranus and Neptune present a challenge to our understanding of the origin and evolution of these bodies, as well as extra-solar ice giants. The thermal evolution of Neptune is known to be nearly consistent with an entirely fluid interior, but this is not a unique solution, and does not account for the tidal dissipation required by the migration of its moons. We examine a model that has been previously shown to explain the thermal and tidal evolution of Uranus: one that features a growing, frozen core. The core traps heat in the interior, affecting the cooling time scale, and provides a source of tidal dissipation. We review the growing, frozen core model, and the computation of thermal and tidal evolution. We then apply this model to Neptune. We find that the growing frozen core model can account for the observed internal luminosity of Neptune and the migration of its moons, in the form of resonances that were either encountered or avoided in the past. We discuss prospects for observational tests of the growing frozen core model and possible implications for understanding the gas giants.