Skip to main content
eScholarship
Open Access Publications from the University of California

NanoEngineering UCSD - Open Access Policy Deposits

This series is automatically populated with publications deposited by UC San Diego Department of NanoEngineering researchers in accordance with the University of California’s open access policies. For more information see Open Access Policy Deposits and the UC Publication Management System.

Cover page of A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring.

A Passive Perspiration Inspired Wearable Platform for Continuous Glucose Monitoring.

(2024)

The demand for glucose monitoring devices has witnessed continuous growth from the rising diabetic population. The traditional approach of blood glucose (BG) sensor strip testing generates only intermittent glucose readings. Interstitial fluid-based devices measure glucose dynamically, but their sensing approaches remain either minimally invasive or prone to skin irritation. Here, a sweat glucose monitoring system is presented, which completely operates under rest with no sweat stimulation and can generate real-time BG dynamics. Osmotically driven hydrogels, capillary action with paper microfluidics, and self-powered enzymatic biochemical sensor are used for simultaneous sweat extraction, transport, and glucose monitoring, respectively. The osmotic forces facilitate greater flux inflow and minimize sweat rate fluctuations compared to natural perspiration-based sampling. The epidermal platform is tested on fingertip and forearm under varying physiological conditions. Personalized calibration models are developed and validated to obtain real-time BG information from sweat. The estimated BG concentration showed a good correlation with measured BG concentration, with all values lying in the A+B region of consensus error grid (MARD = 10.56% (fingertip) and 13.17% (forearm)). Overall, the successful execution of such osmotically driven continuous BG monitoring system from passive sweat can be a useful addition to the next-generation continuous sweat glucose monitors.

Cover page of Cellular fate of a plant virus immunotherapy candidate.

Cellular fate of a plant virus immunotherapy candidate.

(2024)

Cowpea mosaic virus (CPMV) is a plant virus that is currently being developed for intratumoral immunotherapy. CPMV relieves the immune system from tumor-induced immunosuppression; reprograms the tumor microenvironment to an activated state whereby the treated and distant tumors are recognized and eradicated. Toward translational studies, we investigated the safety of CPMV, specifically addressing whether pathogenicity would be induced in mammalian cells. We show that murine macrophage immune cells recognize CPMV; however, there is no indication of de novo viral protein synthesis or RNA replication. Furthermore, we show that CPMV does not induce hemolysis, platelet aggregation and plasma coagulation amongst other assays in human blood and immune cells. Taken together, we anticipate that these results will reinforce the development of CPMV as an immunotherapeutic platform.

Cover page of Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping.

Perovskite Oxide Materials for Solar Thermochemical Hydrogen Production from Water Splitting through Chemical Looping.

(2024)

Solar-driven thermochemical hydrogen (STCH) production represents a sustainable approach for converting solar energy into hydrogen (H2) as a clean fuel. This technology serves as a crucial feedstock for synthetic fuel production, aligning with the principles of sustainable energy. The efficiency of the conversion process relies on the meticulous tuning of the properties of active materials, mostly commonly perovskite and fluorite oxides. This Review conducts a comprehensive review encompassing experimental, computational, and thermodynamic and kinetic property studies, primarily assessing the utilization of perovskite oxides in two-step thermochemical reactions and identifying essential attributes for future research endeavors. Furthermore, this Review delves into the application of machine learning (ML) and density functional theory (DFT) for predicting and classifying the thermochemical properties of perovskite materials. Through the integration of experimental investigations, computational modeling, and ML methodologies, this Review aspires to expedite the screening and optimization of perovskite oxides, thus enhancing the efficiency of STCH processes. The overarching objective is to propel the advancement and practical integration of STCH systems, contributing significantly to the realization of a sustainable and carbon-neutral energy landscape.

Cover page of An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1.

An Abscopal Effect on Lung Metastases in Canine Mammary Cancer Patients Induced by Neoadjuvant Intratumoral Immunotherapy with Cowpea Mosaic Virus Nanoparticles and Anti-Canine PD-1.

(2024)

Neoadjuvant intratumoral (IT) therapy could amplify the weak responses to checkpoint blockade therapy observed in breast cancer (BC). In this study, we administered neoadjuvant IT anti-canine PD-1 therapy (IT acPD-1) alone or combined with IT cowpea mosaic virus therapy (IT CPMV/acPD-1) to companion dogs diagnosed with canine mammary cancer (CMC), a spontaneous tumor resembling human BC. CMC patients treated weekly with acPD-1 (n = 3) or CPMV/acPD-1 (n = 3) for four weeks or with CPMV/acPD-1 (n = 3 patients not candidates for surgery) for up to 11 weeks did not experience immune-related adverse events. We found that acPD-1 and CPMV/acPD-1 injections resulted in tumor control and a reduction in injected tumors in all patients and in noninjected tumors located in the ipsilateral and contralateral mammary chains of treated dogs. In two metastatic CMC patients, CPMV/acPD-1 treatments resulted in the control and reduction of established lung metastases. CPMV/acPD-1 treatments were associated with altered gene expression related to TLR1-4 signaling and complement pathways. These novel therapies could be effective for CMC patients. Owing to the extensive similarities between CMC and human BC, IT CPMV combined with approved anti-PD-1 therapies could be a novel and effective immunotherapy to treat local BC and suppress metastatic BC.

Cover page of Polygalacturonase-inhibiting proteins as an exogenously applied natural solution for prevention of postharvest fungal infections.

Polygalacturonase-inhibiting proteins as an exogenously applied natural solution for prevention of postharvest fungal infections.

(2024)

Polygalacturonase inhibiting proteins (PGIPs) are plant proteins involved in the inhibition of polygalacturonases (PGs), cell-wall degrading enzymes often secreted by phytopathogenic fungi. Previously, we confirmed that PGIP2 from Phaseolus vulgaris (PvPGIP2) can inhibit the growth of Aspergillus niger and Botrytis cinerea on agar plate. In this study, we further validated the feasibility of using PGIP as an environmental and ecological friendly agent to prevent fungal infection post-harvest. We found that application of either purified PGIP (full length PvPGIP2 or truncated tPvPGIP2_5-8), or PGIP-secreting Saccharomyces cerevisiae strains can effectively inhibit fungal growth and necrotic lesions on tobacco leaf. We also examined the effective amount and thermostability of PGIP when applied on plants. A concentration of 0.75 mg/mL or higher can significantly reduce the area of B. cinerea lesions. The activity of full-length PvPGIPs is not affected after incubation at various temperatures ranging from -20 to 42 °C for 24 h, while truncated tPvPGIP2_5-8 lost some efficacy after incubation at 42 °C. Furthermore, we have also examined the efficacy of PGIP on tomato fruit. When the purified PvPGIP2 proteins were applied to tomato fruit inoculated with B. cinerea at a concentration of roughly 1.0 mg/mL, disease incidence and area of disease had reduced by more than half compared to the controls without PGIP treatment. This study explores the potential of PGIPs as exogenously applied, eco-friendly fungal control agents on fruit and vegetables post-harvest.

Cover page of Design principles for enabling an anode-free sodium all-solid-state battery

Design principles for enabling an anode-free sodium all-solid-state battery

(2024)

Anode-free batteries possess the optimal cell architecture due to their reduced weight, volume and cost. However, their implementation has been limited by unstable anode morphological changes and anode–liquid electrolyte interface reactions. Here we show that an electrochemically stable solid electrolyte and the application of stack pressure can solve these issues by enabling the deposition of dense sodium metal. Furthermore, an aluminium current collector is found to achieve intimate solid–solid contact with the solid electrolyte, which allows highly reversible sodium plating and stripping at both high areal capacities and current densities, previously unobtainable with conventional aluminium foil. A sodium anode-free all-solid-state battery full cell is demonstrated with stable cycling for several hundred cycles. This cell architecture serves as a future direction for other battery chemistries to enable low-cost, high-energy-density and fast-charging batteries.

Cover page of Polyphenol-stabilized coacervates for enzyme-triggered drug delivery.

Polyphenol-stabilized coacervates for enzyme-triggered drug delivery.

(2024)

Stability issues in membrane-free coacervates have been addressed with coating strategies, but these approaches often compromise the permeability of the coacervate. Here we report a facile approach to maintain both stability and permeability using tannic acid and then demonstrate the value of this approach in enzyme-triggered drug release. First, we develop size-tunable coacervates via self-assembly of heparin glycosaminoglycan with tyrosine and arginine-based peptides. A thrombin-recognition site within the peptide building block results in heparin release upon thrombin proteolysis. Notably, polyphenols are integrated within the nano-coacervates to improve stability in biofluids. Phenolic crosslinking at the liquid-liquid interface enables nano-coacervates to maintain exceptional structural integrity across various environments. We discover a pivotal polyphenol threshold for preserving enzymatic activity alongside enhanced stability. The disassembly rate of the nano-coacervates increases as a function of thrombin activity, thus preventing a coagulation cascade. This polyphenol-based approach not only improves stability but also opens the way for applications in biomedicine, protease sensing, and bio-responsive drug delivery.

Cover page of A genetically engineered neuronal membrane-based nanotoxoid elicits protective immunity against neurotoxins.

A genetically engineered neuronal membrane-based nanotoxoid elicits protective immunity against neurotoxins.

(2024)

Given their dangerous effects on the nervous system, neurotoxins represent a significant threat to public health. Various therapeutic approaches, including chelating agents, receptor decoys, and toxin-neutralizing antibodies, have been explored. While prophylactic vaccines are desirable, it is oftentimes difficult to effectively balance their safety and efficacy given the highly dangerous nature of neurotoxins. To address this, we report here on a nanovaccine against neurotoxins that leverages the detoxifying properties of cell membrane-coated nanoparticles. A genetically modified cell line with constitutive overexpression of the α7 nicotinic acetylcholine receptor is developed as a membrane source to generate biomimetic nanoparticles that can effectively and irreversibly bind to α-bungarotoxin, a model neurotoxin. This abrogates the biological activity of the toxin, enabling the resulting nanotoxoid to be safely delivered into the body and processed by the immune system. When co-administered with an immunological adjuvant, a strong humoral response against α-bungarotoxin is generated that protects vaccinated mice against a lethal dose of the toxin. Overall, this work highlights the potential of using genetic modification strategies to develop nanotoxoid formulations against various biological threats.

Cover page of Macrophage-Mimicking Cellular Nanoparticles Scavenge Proinflammatory Cytokines in Specimens of Patients with Inflammatory Disorders.

Macrophage-Mimicking Cellular Nanoparticles Scavenge Proinflammatory Cytokines in Specimens of Patients with Inflammatory Disorders.

(2024)

Effectively neutralizing inflammatory cytokines is crucial for managing a variety of inflammatory disorders. Current techniques that target only a subset of cytokines often fall short due to the intricate nature of redundant and compensatory cytokine networks. A promising solution to this challenge is using cell membrane-coated nanoparticles (CNPs). These nanoparticles replicate the complex interactions between cells and cytokines observed in disease pathology, providing a potential avenue for multiplex cytokine scavenging. While the development of CNPs using experimental animal models has shown great promise, their effectiveness in scavenging multiple cytokines in human diseases has yet to be demonstrated. To bridge this gap, this study selected macrophage membrane-coated CNPs (MФ-CNPs) and assessed their ability to scavenge inflammatory cytokines in serum samples from patients with COVID-19, sepsis, acute pancreatitis, or type-1 diabetes, along with synovial fluid samples from patients with rheumatoid arthritis. The results show that MФ-CNPs effectively scavenge critical inflammatory cytokines, including interleukin (IL)-6, IL-8, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α, in a dose-dependent manner. Overall, this study demonstrates MФ-CNPs as a multiplex cytokine scavenging formulation with promising applications in clinical settings to treat a range of inflammatory disorders.