We establish an asymptotic formula for determinants of truncated Wiener-Hopf+Hankel operators with symbol equal to the exponential of a constant times the characteristic function of an interval. This is done by reducing it to the corresponding (known) asymptotics for truncated Toeplitz+Hankel operators. The determinants in question arise in random matrix theory in determining the limiting distribution for the number of eigenvalues in an interval for a scaled Laguerre ensemble of positive Hermitian matrices.