We report on an ongoing study on modular Heavy Ion Fusion drivers. The modular driver is characterized by 10 to 20 nearly identical induction linacs, each carrying a single high current beam. In this scheme, the Integrated Research Experiment (IRE) can be one of the full size induction linacs. Hence, this approach offers significant advantages in terms of driver development path. For beam transport, these modules use solenoids which are capable of carrying high line charge densities, even at low energies. A new injector concept allows compression of the beam to high line densities right at the source. The final drift compression is performed in a plasma, in which the large repulsive space charge effects are neutralized. Finally, the beam is transversely compressed onto the target, using either external solenoids or current-carrying channels (in the Assisted Pinch Mode of beam propagation). We will report on progress towards a self-consistent point design from injector to target. Considerations of driver architecture, chamber environment as well as the methodology for meeting target requirements of spot size, pulse shape and symmetry will also be described. Finally, some near-term experiments to address the key scientific issues will be discussed.
The BABAR Silicon Vertex Tracker (SVT) has been efficiently operated for six years since the start of data taking in 1999. Due to higher than expected background levels some unforeseen effects have appeared. We discuss: a shift in the pedestal for the channels of the AToM readout chips that are most exposed to radiation; an anomalous increase in the bias leakage current for the modules in the outer layers. Estimates of future radiation doses and occupancies are shown together with the extrapolated detector performance and lifetime, in light of the new observations. (c) 2006 Elsevier B.V. All rights reserved.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.