- Huang, Tzu‐Yang;
- Cai, Zijian;
- Crafton, Matthew J;
- Kaufman, Lori A;
- Konz, Zachary M;
- Bergstrom, Helen K;
- Kedzie, Elyse A;
- Hao, Han‐Ming;
- Ceder, Gerbrand;
- McCloskey, Bryan D
Pronounced voltage hysteresis in Li-excess cathode materials is commonly thought to be associated with oxygen redox. However, these materials often possess overlapping oxygen and transition-metal redox, whose contributions to hysteresis between charge and discharge are challenging to distinguish. In this work, a two-step aqueous redox titration is developed with the aid of mass spectrometry (MS) to quantify oxidized lattice oxygen and Mn3+ /4+ redox in a representative Li-excess cation-disordered rock salt—Li1.2Mn0.4Ti0.4O2 (LMTO). Two MS-countable gas molecules evolve from two separate titrant-analyte reactions, thereby allowing Mn and O redox capacities to be decoupled. The decoupled O and Mn redox coulombic efficiencies are close to 100% for the LMTO cathode, indicating high charge-compensation reversibility. As incremental Mn and O redox capacities are quantitatively decoupled, each redox voltage hysteresis is further evaluated. Overall, LMTO voltage hysteresis arises not only from an intrinsic charge-discharge voltage mismatch related to O redox, but also from asymmetric Mn-redox overvoltages. The results reveal that O and Mn redox both contribute substantially to voltage hysteresis. This work further shows the potential of designing new analytical workflows to experimentally quantify key properties, even in a disordered material having complex local coordination environments.