The emergence of "big data" offers unprecedented opportunities for not only
accelerating scientific advances but also enabling new modes of discovery.
Scientific progress in many disciplines is increasingly enabled by our ability
to examine natural phenomena through the computational lens, i.e., using
algorithmic or information processing abstractions of the underlying processes;
and our ability to acquire, share, integrate and analyze disparate types of
data. However, there is a huge gap between our ability to acquire, store, and
process data and our ability to make effective use of the data to advance
discovery. Despite successful automation of routine aspects of data management
and analytics, most elements of the scientific process currently require
considerable human expertise and effort. Accelerating science to keep pace with
the rate of data acquisition and data processing calls for the development of
algorithmic or information processing abstractions, coupled with formal methods
and tools for modeling and simulation of natural processes as well as major
innovations in cognitive tools for scientists, i.e., computational tools that
leverage and extend the reach of human intellect, and partner with humans on a
broad range of tasks in scientific discovery (e.g., identifying, prioritizing
formulating questions, designing, prioritizing and executing experiments
designed to answer a chosen question, drawing inferences and evaluating the
results, and formulating new questions, in a closed-loop fashion). This calls
for concerted research agenda aimed at: Development, analysis, integration,
sharing, and simulation of algorithmic or information processing abstractions
of natural processes, coupled with formal methods and tools for their analyses
and simulation; Innovations in cognitive tools that augment and extend human
intellect and partner with humans in all aspects of science.