In light emitting diodes (LED) consisting of GaN/InGaN/GaN quantum wells (QWs), the exact indium distribution inside the wells of the active region affects the performance of devices. Indium segregation can take place forming small InGaN clusters of locally varying composition. In the past, we used a local strain analysis from single HRTEM lattice images to determine the In composition inside the InGaN QWs with a resolution of 0.5 nm x 0.3 nm. Truly atomic resolution can be pursued by exploitation of intensity dependencies on the atomic number (Z) of the electron exit-wave (EW). In microscopes with sufficient sensitivity, local variations of amplitude and phase are found to be discrete with sample thickness, which allows for counting the number of atoms in each individual column of ~;0.08 nm diameter. In QW s of ~;17 percent of average indium concentration it is possible to discriminate between pure Ga columns and columns containing 1, 2, 3, or more In atoms because phase changes are discrete and element specific. The preparation of samples with atomically flat surfaces is a limiting factor for the application of the procedure.
GaN/InGaN light emitting diodes (LEDs) are commercialized for lighting applications because of the cost efficient way that they produce light of high brightness1,2. Nevertheless, there is significant room for improving their external emission efficiency3 from typical values below 10 percent4 to more than 50 percent5, which are obtainable by use of other materials systems that, however, do not cover the visible spectrum. In particular, green-light emitting diodes fall short in this respect1-3, which is troublesome since the human eye is most sensitive in this spectral range. In this letter advanced electron microscopy is used to characterize indium segregation in InGaN quantum wells of high-brightness, green LEDs (with external quantum efficiency as high as 15 percent at 75 A/cm2). Our investigations reveal the presence of 1-3 nm wide indium rich clusters in these devices with indium concentrations as large as 0.30-0.40 that narrow the band gap locally to energies as small as 2.65 eV.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.