PURPOSE: To investigate the association between a validated, gene-expression-based, aggressiveness assay, Oncotype Dx RS, and morphological and texture-based image features extracted from magnetic resonance imaging (MRI). MATERIALS AND METHODS: This retrospective study received Internal Review Board approval and need for informed consent was waived. Between 2006-2012, we identified breast cancer patients with: 1) ER+, PR+, and HER2- invasive ductal carcinoma (IDC); 2) preoperative breast MRI; and 3) Oncotype Dx RS test results. Extracted features included morphological, histogram, and gray-scale correlation matrix (GLCM)-based texture features computed from tumors contoured on pre- and three postcontrast MR images. Linear regression analysis was performed to investigate the association between Oncotype Dx RS and different clinical, pathologic, and imaging features. P < 0.05 was considered statistically significant. RESULTS: Ninety-five patients with IDC were included with a median Oncotype Dx RS of 16 (range: 0-45). Using stepwise multiple linear regression modeling, two MR-derived image features, kurtosis in the first and third postcontrast images and histologic nuclear grade, were found to be significantly correlated with the Oncotype Dx RS with P = 0.0056, 0.0005, and 0.0105, respectively. The overall model resulted in statistically significant correlation with Oncotype Dx RS with an R-squared value of 0.23 (adjusted R-squared = 0.20; P = 0.0002) and a Spearmans rank correlation coefficient of 0.49 (P < 0.0001). CONCLUSION: A model for IDC using imaging and pathology information correlates with Oncotype Dx RS scores, suggesting that image-based features could also predict the likelihood of recurrence and magnitude of chemotherapy benefit.