Empress Dowager Cixi was the last formidable imperial woman of dynastic China and the de facto ruler of the Qing Empire between 1862 and 1908. Her significance in modern Chinese politics is well studied, but the matriarch's encompassing engagement in art remains understudied. This dissertation examines concentrically Cixi's avid participation in portraiture, attire and daily accessories, painting and calligraphy, as well as imperial garden palaces, to illuminate her self-expressions in visual and material cultures. I argue that Cixi utilized the notion of court art as a symbolic realm of sovereignty and adapted prior Qing rulers' patterns of representing authority to visualize the power she exercised. As such, the late Qing court art organizations were at her service to stage her performance as a female ruler.
While adopting the visual language of imperial portraiture to represent her authority, the strategic choices of subjects and motifs in the portrait maintained the sitter's womanly identity. In the realm of decorative arts, Cixi manipulated the production of imperial porcelain ware to assert her role as a ruler, but she imprinted a touch of feminine taste in the porcelain by using designs that shared similar color schemes and patterns with those on imperial women's attire. In comparison, the matriarch's performance of the high arts operated differently. Cixi displayed the fondness and capability to participate in the gentlemen's arts. She also spared no effort to model after the painting and calligraphic works of earlier Qing emperors to make an intimate connection with the imperial genealogy. The most ambitious dimension of her patronage lies in the empress dowager's renovation and reconstruction of the imperial space, whose apex was the reconstruction of the Gardens of Nurtured Harmony, which was transformed into an arena of female agency.
WRKY transcription factors regulate diverse plant processes including responses to biotic stresses. Our previous studies indicate that OsWRKY62, an OsWRKY IIa subfamily member, functions as a negative regulator of the rice defense against Xanthomonas oryzae pv. oryzae. Here, we report that a large inverted repeat construct designed to knock down the expression of the four OsWRKY IIa subfamily members (OsWRKY62, OsWRKY28, OsWRKY71, and OsWRKY76) leads to overexpression of all four genes and disease resistance in some transgenic plants. These phenotypes are stably inherited as reflected by progeny analysis. A pathogenesis-related gene, PR10, is up-regulated in plants overexpressing the OsWRKY IIa genes. These results suggest that OsWRKY IIa proteins interact functionally to modulate plant innate immunity.
Perception of extracellular signals by cell surface receptors is of central importance to eukaryotic development and immunity. Kinases that are associated with the receptors or are part of the receptors themselves modulate signaling through phosphorylation events. The rice (Oryza sativa L.) XA21 receptor kinase is a key recognition and signaling determinant in the innate immune response. A yeast two-hybrid screen using the intracellular portion of XA21, including the juxtamembrane (JM) and kinase domain as bait, identified a protein phosphatase 2C (PP2C), called XA21 binding protein 15 (XB15). The interaction of XA21 and XB15 was confirmed in vitro and in vivo by glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, respectively. XB15 fusion proteins purified from Escherichia coli and from transgenic rice carry PP2C activity. Autophosphorylated XA21 can be dephosphorylated by XB15 in a temporal- and dosage-dependent manner. A serine residue in the XA21 JM domain is required for XB15 binding. Xb15 mutants display a severe cell death phenotype, induction of pathogenesis-related genes, and enhanced XA21-mediated resistance. Overexpression of Xb15 in an XA21 rice line compromises resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae. These results demonstrate that Xb15 encodes a PP2C that negatively regulates the XA21-mediated innate immune response.
The rice Xa21 gene, which confers resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), encodes a receptor-like kinase. Few components involved in transducing the Xa21-mediated defense response have yet been identified. Here, we report that XA21 binds to a WRKY transcription factor, called OsWRKY62. The OsWRKY62 gene encodes two splice variants (OsWRKY62.1 and OsWRKY62.2). OsWRKY62.1:smGFP2 and OsWRKY62.2:smGFP2 fusion proteins partially localize to the nucleus. Transgenic plants overexpressing OsWRKY62.1 are compromised in basal defense and Xa21-mediated resistance to Xoo. Furthermore, overexpression of OsWRKY62.1 suppresses the activation of defense-related genes. These results imply that OsWRKY62 functions as a negative regulator of innate immunity in rice, and serves as a critical mediator of both basal and race-specific defense responses.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.