With advances in high-throughput genomics and proteomics, it is challenging for biologists to deal with large data files and to map their data to annotations in public databases.
We developed TabSQL, a MySQL-based application tool, for viewing, filtering and querying data files with large numbers of rows. TabSQL provides functions for downloading and installing table files from public databases including the Gene Ontology database (GO), the Ensembl databases, and genome databases from the UCSC genome bioinformatics site. Any other database that provides tab-delimited flat files can also be imported. The downloaded gene annotation tables can be queried together with users' data in TabSQL using either a graphic interface or command line.
TabSQL allows queries across the user's data and public databases without programming. It is a convenient tool for biologists to annotate and enrich their data.
In case-control profiling studies, increasing the sample size does not always improve statistical power because the variance may also be increased if samples are highly heterogeneous. For instance, tumor samples used for gene expression assay are often heterogeneous in terms of tissue composition or mechanism of progression, or both; however, such variation is rarely taken into account in expression profiles analysis. We use a prostate cancer prognosis study as an example to demonstrate that solely recruiting more patient samples may not increase power for biomarker detection at all. In response to the heterogeneity due to mixed tissue, we developed a sample selection strategy termed Stepwise Enrichment by which samples are systematically culled based on tumor content and analyzed with t-test to determine an optimal threshold for tissue percentage. The selected tissue-percentage threshold identified the most significant data by balancing the sample size and the sample homogeneity; therefore, the power is substantially increased for identifying the prognostic biomarkers in prostate tumor epithelium cells as well as in prostate stroma cells. This strategy can be generally applied to profiling studies where the level of sample heterogeneity can be measured or estimated.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.