Skip to main content
eScholarship
Open Access Publications from the University of California

Volume 72, Issue 1, 2018

The Sustainable Groundwater Management Act

Issue cover
Cover Caption: Areas highlighted in yellow, orange and red are, respectively, the medium-priority, high-priority and critically overdrafted groundwater basins subject to regulation under California’s Sustainable Groundwater Management Act of 2014.

Research and Review Articles

How are Western water districts managing groundwater basins?

Making the transition from open-access groundwater rights to sustainable groundwater management is a formidable task for newly formed groundwater sustainability agencies in California. As agencies begin to decide how to make equitable water allocations, how to monitor groundwater use and what mix of supply- and demand-side mechanisms to adopt to satisfy sustainability criteria, the groundwater management strategies in place across other basins in the western United States are worth studying. We surveyed 18 groundwater districts in California and other Western states to identify the management approaches and practices they have instituted. The conclusions we draw suggest a correlative rights framework of water allocation with phase-ins for heavy users; metered pumping; flexible arrangements for trading and carrying over allocations for multiple years; and incentivizing groundwater recharge, including recharge from deep percolation from crops. Rigid formulas for significantly reducing groundwater use in medium- and high-priority basins are likely to have significant negative effects on the regional economy.

Farmers share their perspectives on California water management and the Sustainable Groundwater Management Act

Agriculture is the largest human use of water in California, which gives farmers a critical role in managing water to meet the goals of the Sustainable Groundwater Management Act (SGMA). To explore farmers' perspectives on SGMA, we held focus groups with 20 farmers in Yolo County, where the groundwater basin has been given a high/medium priority under SGMA. The farmers had varying perspectives about the factors that led to SGMA and varying responses to the regulation. They suggested that drought, competing agricultural and urban uses, and an increase in perennial crops were factors in recent water use, resulting in changes to water quality and quantity. Impacts of those changes included variable well levels, increased infrastructure costs, and ecosystem impacts, which farmers had responded to by implementing multiple management strategies. Additional research in other regions is imperative to provide farmers' viewpoints and strategies to policymakers, irrigation districts, farmer cooperatives, and the agricultural industry and give farmers a voice at the table.

Diverse stakeholders create collaborative, multilevel basin governance for groundwater sustainability

The Sustainable Groundwater Management Act (SGMA) is introducing significant changes in the way groundwater is governed for agricultural use. It requires the formation of groundwater sustainability agencies (GSAs) to manage groundwater basins for sustainability with the engagement of all users. That presents opportunities for collaboration, as well as challenges, particularly in basins with large numbers of agricultural water users who have longstanding private pumping rights. The GSA formation process has resulted in the creation of multiple GSAs in many such basins, particularly in the Central Valley. In case studies of three basins, we examine agricultural stakeholders' concerns about SGMA, and how these are being addressed in collaborative approaches to groundwater basin governance. We find that many water districts and private pumpers share a strong interest in maintaining local autonomy, but they have distinct concerns and different options for forming and participating in GSAs. Multilevel collaborative governance structures may help meet SGMA's requirements for broad stakeholder engagement, our studies suggest, while also addressing concerns about autonomy and including agricultural water users in decision-making.

How can we support the development of robust groundwater sustainability plans?

Three years after California passed the Sustainable Groundwater Management Act (SMGA), groundwater sustainability agencies (GSAs) are now preparing to develop their groundwater sustainability plans (GSPs), the blueprints that will outline each basin's road to sustainability. Successful GSPs will require an effective participatory decision-making process. We tested a participatory process with the Yolo County Flood Control and Water Conservation District, a water-limited irrigation district in the Central Valley. First, we worked with district stakeholders to outline the parts of the plan and set measureable objectives for sustainability. The district defined seven management strategies, which the research team evaluated against climate, land use and regulatory uncertainties using a water resources model. Together, we explored model results using customized interactive graphics. We found that the business-as-usual strategy was the most unlikely to meet sustainability objectives; and that a conjunctive use strategy, with winter groundwater recharge and periphery ponds storage, achieved acceptable measures of sustainability under multiple uncertainties, including a hypothetical pumping curtailment. The process developed a shared understanding of the vulnerabilities of the local groundwater situation and proved valuable in evaluating strategies to overcome them.

Managed winter flooding of alfalfa recharges groundwater with minimal crop damage

It is well known that California experiences dramatic swings in precipitation that are difficult to predict and challenging to agriculture. In times of drought, groundwater serves as a crucial savings account that is heavily relied upon. However, few tools exist to proactively refill this crucial reserve in wet years. We explored the idea of intentional winter flooding of agricultural land to promote on-farm recharge of the underlying groundwater. Field experiments were conducted on two established alfalfa stands to determine the feasibility of groundwater recharge and test realistic water application amounts and timings and potential crop damage. We studied soils with relatively high percolation rates and found that most of the applied water percolated to the groundwater table, resulting in short-lived saturated conditions in the root zone and minimal yield loss. While caution is appropriate to prevent crop injury, winter recharge in alfalfa fields with highly permeable soils appears to be a viable practice.

Paso Robles vineyard irrigation study provides benchmark data to assist future area groundwater management

Accurate information on irrigation water usage does not exist in many areas where groundwater is the primary water source. This lack of information will hinder efforts to manage these groundwater basins sustainably according to current and future water regulations and policies. Using a low-cost methodology of irrigation-line pressure sensors connected to data loggers, we estimated irrigation applications at 84 vineyard sites in the Paso Robles Groundwater Basin over 4 years (2010–2013). We compared irrigation amounts with the preceding winter's rainfall and with the growing season reference evapotranspiration (ETo). Over the study period, the average annual irrigation application was 11.46 inches (291 millimeters). The average annual application correlated inversely to the preceding winter's rainfall, while the irrigation over the growing season (April–October) correlated directly with the ETo over this same period. This study provides an initial data framework that can be used by groundwater sustainability agencies to help manage groundwater in the Paso Robles area. The methodology also could be utilized in other regions to estimate regional irrigation usage while maintaining anonymity for participants.

Modeling guides groundwater management in a basin with river–aquifer interactions

The Sustainable Groundwater Management Act (SGMA) of 2014 seeks to maintain groundwater discharge to streams to support environmental goals. In Scott Valley, in Siskiyou County, the Scott River and its tributaries are an important salmonid spawning habitat, and about 10% of average annual Scott River stream flow comes from groundwater. The local groundwater advisory committee is developing groundwater management alternatives that would increase summer and early fall stream flows. We developed a model to provide a framework to evaluate those alternatives. We first created a water budget for the Scott Valley groundwater basin and integrated the detailed, spatiotemporally distributed water budget results into a computer model of the basin that simultaneously accounted for groundwater flow, stream flow and landscape water fluxes. Different conceptual representations (using the MODFLOW RIV package and MODFLOW SFR package) of the stream–aquifer boundary provided significantly different results in the seasonal dynamics of groundwater–surface water fluxes. As groundwater sustainability agencies draw up plans to meet SGMA requirements, they must choose and test simulation tools carefully.