Skip to main content
Open Access Publications from the University of California

Volume 76, Issue 1, 2022

The Salton Sea

Issue cover
Cover Caption: While the Salton Sea was a relatively stable ecosystem for most of the 20th century, recent agricultural-to-urban water transfers have caused significant impacts on the region’s ecology. This special issue of California Agriculture features review articles that highlight what recent research can say about the changing Salton Sea ecosystem and its environmental and human health–related impacts, and identify areas in which further scientific research is needed to better inform policy. Photo: Richard Trible,

Research and Review Articles

The Salton Sea: An introduction to an evolving system and the role of science

In this special issue, California Agriculture presents review articles that highlight what research to date can say about the changing Salton Sea ecosystem and its environmental and human health–related impacts, and identify areas in which further scientific research is needed to better inform policy.

Ecological transitions at the Salton Sea: Past, present and future

The condition of the Salton Sea, California's largest lake, has profound implications for people and wildlife both near and far. Colorado River irrigation water has supported agricultural productivity in the basin's Coachella and Imperial valleys since the Sea formed over 100 years ago, bringing billions of dollars per year to the region and helping to feed households across the United States. The runoff, which drains into the Sea, has historically maintained water levels and supported critical fish and migratory bird habitats. However, since 2018, a large portion of the water previously allocated for agriculture has been diverted to urban regions, causing the Sea to shrink and become increasingly saline. This poses major threats to the Sea's ecology, as well as risks to human health, most notably in the noxious dust produced by the drying lakebed. To ensure continued agricultural and ecological productivity and protect public health, management of the Sea and surrounding wetlands will require increased research and mitigation efforts.

Microbiome interactions and their ecological implications at the Salton Sea

Although the Salton Sea was once a thriving destination for humans and wildlife, it has now degraded to the point of ecosystem collapse. Increases in local dust emissions have introduced aeolian (wind-blown) microorganisms that travel, along with contaminants and minerals, into the atmosphere, detrimentally impacting inhabitants of the region. Proliferation of certain microbial groups in regions of the Sea may have a disproportionate impact on local ecological systems. Yet, little is known about how the biogeochemical processes of this drying lakebed influence microbial community composition and dispersal. To elucidate how these microorganisms contribute, and adapt, to the Sea's volatile conditions, we synthesize research on three niche-specific microbiomes — exposed lakebed (playa), the Sea, and aeolian — and highlight modern molecular techniques, such as metagenomics, coupled with physical science methodologies, including transport modeling, to predict how the drying lakebed will affect microbial processes. We argue that an explicit consideration of microbial groups within this system is needed to provide vital information about the distribution and functional roles of ecologically pertinent microbial groups. Such knowledge could help inform regulatory measures aimed at restoring the health of the Sea's human and ecological systems.

The drying Salton Sea and asthma: A perspective on a “natural” disaster

The Salton Sea is a drying salt lake in an arid region with high aerosol particulate-matter concentrations. This region is plagued by a high incidence of asthma, attributed in part to the aerosols surrounding the Sea. But the connection between the Sea and asthma may be more than simple calculations of dust concentrations. While dusts might contain toxic substances that impact the lungs of residents, the complex dynamics related to the environmental degradation of the Salton Sea may be generating additional toxins relevant to public health, such as microcystins produced by algal blooms. This collection of pollutants may be driving inflammatory responses in the lungs of residents through multiple mechanisms. As such, examination of the full range of potential environmental triggers of lung inflammation promises to yield a better understanding of key mechanisms driving the high incidence of asthma in local residents. Our discussion provides a perspective aiming to re-frame the issue in the context of the historical theory of “miasma” and the linkages between environmental change and health impacts.

Impacts of winter cover cropping on soil moisture and evapotranspiration in California's specialty crop fields may be minimal during winter months

As fresh water supplies become more unreliable, variable and expensive, the water-related implications of sustainable agriculture practices such as cover cropping are drawing increasing attention from California's agricultural communities. However, the adoption of winter cover cropping remains limited among specialty crop growers who face uncertainty regarding the water use of this practice. To investigate how winter cover crops affect soil water and evapotranspiration on farm fields, we studied three systems that span climatic and farming conditions in California's Central Valley: processing tomato fields with cover crop, almond orchards with cover crop, and almond orchards with native vegetation. From 2016 to 2019, we collected soil moisture data (3 years of neutron hydroprobe and gravimetric tests at 10 field sites) and evapotranspiration measurements (2 years at two of 10 sites) in winter cover cropped and control (clean-cultivated, bare ground) plots during winter months. Generally, there were not significant differences in soil moisture between cover cropped and control fields throughout or at the end of the winter seasons, while evapo-transpirative losses due to winter cover crops were negligible relative to clean-cultivated soil. Our results suggest that winter cover crops in the Central Valley may break even in terms of actual consumptive water use. California growers of high-value specialty crops can likely adopt winter cover cropping without altering their irrigation plans and management practices.

Soil health practices have different outcomes depending on local soil conditions

The amount of soil organic matter is a critical indicator of soil health. Applying compost or manure, growing cover crops, reducing tillage, and increasing crop diversity may increase soil organic matter. However, soil organic matter can vary dramatically in different environments, regardless of management practices. This calls for a framework to recommend place-based soil health practices and evaluate their outcomes. We used a new framework that groups soil survey data into seven regions in California's Central Valley and Central Coast. These regions either have performance limitations, such as root restrictive horizons, salinity, and shrink-swell behavior, or have relatively homogeneous, coarse-to-loamy soils ideal for agriculture. These inherent conditions affect a soil's response to practices designed to improve soil health. Looking at vineyards as an example, we find significant soil organic matter contrasts between soil health regions but not among contrasting management approaches within a given region. We also show that conservation practices improve or help maintain soil health in several long-term experiments, but inherent soil properties and types of cropping systems affect outcomes.