Skip to main content
eScholarship
Open Access Publications from the University of California

About

This series is home to publications and data sets from the Bourns College of Engineering at the University of California, Riverside.

Related Units

Center for Environmental Research and Technology

Bourns College of Engineering

There are 1713 publications in this collection, published between 1988 and 2024.
BCOE Research (27)
24 more worksshow all
Other Recent Work (1243)

Gaussian accelerated molecular dynamics (GaMD): principles and applications.

Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. It works by adding a harmonic boost potential to smooth biomolecular potential energy surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by orders of magnitude. Without the need to set predefined reaction coordinates or collective variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., "Gaussian approximation"). This leads to accurate reconstruction of free energy landscapes of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica exchange GaMD (rex-GaMD) and replica exchange umbrella sampling GaMD (GaREUS), have also been introduced, further improving sampling and free energy calculations. Recently, new "selective GaMD" algorithms including the ligand GaMD (LiGaMD) and peptide GaMD (Pep-GaMD) enabled microsecond simulations to capture repetitive dissociation and binding of small-molecule ligands and highly flexible peptides. The simulations then allowed highly efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of biomolecular dynamics, including protein folding, conformational changes and allostery, ligand binding, peptide binding, protein-protein/nucleic acid/carbohydrate interactions, and carbohydrate/nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent applications in biomolecular simulations and drug design.

Hybrid millimeter-wave systems: a novel paradigm for hetnets

Heterogeneous networks, HetNets, are known to enhance the bandwidth efficiency and throughput of wireless networks by more effectively utilizing the network resources. However, the higher density of users and access points in HetNets introduces significant inter-user interference that needs to be mitigated through complex and sophisticated interference cancellation schemes. Moreover, due to significant channel attenuation and the presence of hardware impairments, e.g. phase noise and amplifier nonlinearities, the vast bandwidth in the millimeterwave band has not been fully utilized to date. In order to enable the development of multi-Gigabit per second wireless networks, we introduce a novel millimeter-wave HetNet paradigm, termed hybrid HetNet, which exploits the vast bandwidth and propagation characteristics in the 60 GHz and 70-80 GHz bands to reduce the impact of interference in HetNets. Simulation results are presented to illustrate the performance advantage of hybrid HetNets with respect to traditional networks. Next, two specific transceiver structures that enable hand-offs from the 60 GHz band, i.e. the V-band to the 70-80 GHz band, i.e. the E-band, and vice versa are proposed. Finally, the practical and regulatory challenges for establishing a hybrid HetNet are outlined.

Leveraging off higher plant phylogenetic insights for antiplasmodial drug discovery.

The antimalarial drug-resistance conundrum which threatens to reverse the great strides taken to curb the malaria scourge warrants an urgent need to find novel chemical scaffolds to serve as templates for the development of new antimalarial drugs. Plants represent a viable alternative source for the discovery of unique potential antiplasmodial chemical scaffolds. To expedite the discovery of new antiplasmodial compounds from plants, the aim of this study was to use phylogenetic analysis to identify higher plant orders and families that can be rationally prioritised for antimalarial drug discovery. We queried the PubMed database for publications documenting antiplasmodial properties of natural compounds isolated from higher plants. Thereafter, we manually collated compounds reported along with plant species of origin and relevant pharmacological data. We systematically assigned antiplasmodial-associated plant species into recognised families and orders, and then computed the resistance index, selectivity index and physicochemical properties of the compounds from each taxonomic group. Correlating the generated phylogenetic trees and the biological data of each clade allowed for the identification of 3 hot plant orders and families. The top 3 ranked plant orders were the (i) Caryophyllales, (ii) Buxales, and (iii) Chloranthales. The top 3 ranked plant families were the (i) Ancistrocladaceae, (ii) Simaroubaceae, and (iii) Buxaceae. The highly active natural compounds (IC50 ≤ 1 µM) isolated from these plant orders and families are structurally unique to the legacy antimalarial drugs. Our study was able to identify the most prolific taxa at order and family rank that we propose be prioritised in the search for potent, safe and drug-like antimalarial molecules.

1240 more worksshow all
Humboldt Kolleg/NSF Workshop: New Vistas in Molecular Thermodynamics (34)
31 more worksshow all

Related Research Centers & Groups