Skip to main content
Open Access Publications from the University of California
Notice: eScholarship will undergo scheduled maintenance from Tuesday, January 21 to Wednesday, January 22. Some functionality may not be available during this time. Learn more at eScholarship Support.
Download PDF
- Main
Von Staudt constructions for skew-linear and multilinear matroids
© 2023 by the author(s). Learn more.
Abstract
This paper compares skew-linear and multilinear matroid representations. These are matroids that are representable over division rings and (roughly speaking) invertible matrices, respectively. The main tool is the von Staudt construction, by which we translate our problems to algebra. After giving an exposition of a simple variant of the von Staudt construction we present the following results:
Undecidability of several matroid representation problems over division rings. An example of a matroid with an infinite multilinear characteristic set, but which is not multilinear in characteristic \(0\). An example of a skew-linear matroid that is not multilinear.
Mathematics Subject Classifications: 05B35, 52B40, 14N20, 52C35, 20F10, 03D40
Keywords: Matroids, division ring representations, subspace arrangements, \(c\)-arrange\-ments, multilinear matroids, von Staudt constructions, word problem, Weyl algebra, Baumslag-Solitar group
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%