Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Coexistence of soft and hard magnetic phases in single layer amorphous Tb–Co thin films

Published Web Location

https://doi.org/10.1063/5.0074314Creative Commons 'BY-NC' version 4.0 license
Abstract

Amorphous, ferrimagnetic Tb-Co thin films prepared with a thin Ta underlayer and either a Ta or a Pt overlayer show evidence of both soft and hard magnetic phases. At room temperature, the films exhibit conventional ferromagnetism, but low temperature magnetometry measurements reveal the decoupling of the two magnetic phases with decreasing temperature due to increased anisotropy energy of the hard layer at lower temperatures. Decreasing the film thickness to 2 nm, slightly above the superparamagnetic limit found at 1 nm, a soft, low-density phase was isolated and found to be present in all the films as confirmed with x-ray reflectivity and Rutherford backscattering spectrometry measurements. For greater thicknesses, the bottom layer retains its soft magnetic nature, while the remainder of the film is denser and has strong perpendicular magnetic anisotropy, leading to the exchange-spring behavior when the anisotropy becomes large, either at low temperatures or via a Pt overlayer that adds a strong interfacial anisotropy to the layer. Micromagnetic simulations of a soft/hard bilayer model with the experimentally determined anisotropy and magnetization parameters into a soft/hard bilayer model reproduced the experimental hysteretic behavior very well. These findings demonstrate how the magnetic state and the response of a-Tb-Co films to external fields can be controlled, providing a high degree of tunability that is promising for high-performance nanoscale devices.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View