Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Chromatin-driven de novo discovery of DNA binding motifs in the human malaria parasite

Abstract

Abstract Background Despite extensive efforts to discover transcription factors and their binding sites in the human malaria parasite Plasmodium falciparum, only a few transcription factor binding motifs have been experimentally validated to date. As a consequence, gene regulation in P. falciparum is still poorly understood. There is now evidence that the chromatin architecture plays an important role in transcriptional control in malaria. Results We propose a methodology for discovering cis-regulatory elements that uses for the first time exclusively dynamic chromatin remodeling data. Our method employs nucleosome positioning data collected at seven time points during the erythrocytic cycle of P. falciparum to discover putative DNA binding motifs and their transcription factor binding sites along with their associated clusters of target genes. Our approach results in 129 putative binding motifs within the promoter region of known genes. About 75% of those are novel, the remaining being highly similar to experimentally validated binding motifs. About half of the binding motifs reported show statistically significant enrichment in functional gene sets and strong positional bias in the promoter region. Conclusion Experimental results establish the principle that dynamic chromatin remodeling data can be used in lieu of gene expression data to discover binding motifs and their transcription factor binding sites. Our approach can be applied using only dynamic nucleosome positioning data, independent from any knowledge of gene function or expression.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View