Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Measurement of Cell Intrinsic TGF-β Activation Mediated by the Integrin αvβ8.

Abstract

Transforming growth factor beta (TGF-β) is a multi-functional cytokine that plays a significant role in multiple diseases, including fibrosis and tumor progression. Whilst the biologic effects of TGF-β are well characterized, it is unclear how TGF-β signaling is regulated to impart specific responses within certain cell types. One mechanism of regulation may be through TGF-β activation, since TGF-β is always expressed in a latent form (L-TGF-β). Campbell et al.(2020) recently presented a new structural model to demonstrate how the integrin αvβ8 might specifically control TGF-β activation and signaling. In this model, αvβ8 binds to cell surface L-TGF-β1 to induce a conformational change, which exposes mature TGF-β peptide to TGF-β receptors (TGF-βRs), allowing initiation of TGF-β signaling from within the latent complex. This model also predicts that TGF-β signaling would be directed specifically towards the TGF-β expressing cell surface. We sought to test the validity of the new structural model by creating a cell-based assay which utilizes luciferase TGF-β reporter cells (TMLC). TMLC cells express high levels of TGF-βRs, but do not express cell surface L-TGF-β. We modified TMLC reporter cells to express cell surface L-TGF-β1 in a mutant form, which prevents the release of mature TGF-β from the latent complex. The newly generated cell lines were then used in a novel functional assay to investigate whether integrin αvβ8 could potentiate cell intrinsic TGF-β signaling from within the latent complex in vitro.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View