Skip to main content
Download PDF
- Main
Fixed points of analytic actions of supersoluble Lie groups on compact surfaces.
Abstract
It is shown that every real analytic action of a connected supersoluble Lie group on a compact surface with nonzero Euler characteristic has a fixed point. This implies that E. Lima's fixed point free action of the affine group of the line on the 2-sphere S cannot be approximated by analytic actions. An example is given of an analytic, fixed point free action on S of a solvable group that is notsupersoluble.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.