Informational and Causal Architecture of Discrete-Time Renewal Processes
Skip to main content
eScholarship
Open Access Publications from the University of California

Informational and Causal Architecture of Discrete-Time Renewal Processes

  • Author(s): Marzen, Sarah
  • Crutchfield, James P.
  • et al.

Published Web Location

https://arxiv.org/pdf/1408.6876.pdf
No data is associated with this publication.
Abstract

Renewal processes are broadly used to model stochastic behavior consisting of isolated events separated by periods of quiescence, whose durations are specified by a given probability law. Here, we identify the minimal sufficient statistic for their prediction (the set of causal states), calculate the historical memory capacity required to store those states (statistical complexity), delineate what information is predictable (excess entropy), and decompose the entropy of a single measurement into that shared with the past, future, or both. The causal state equivalence relation defines a new subclass of renewal processes with a finite number of causal states despite having an unbounded interevent count distribution. We use these formulae to analyze the output of the parametrized Simple Nonunifilar Source, generated by a simple two-state hidden Markov model, but with an infinite-state epsilon-machine presentation. All in all, the results lay the groundwork for analyzing processes with infinite statistical complexity and infinite excess entropy.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Item not freely available? Link broken?
Report a problem accessing this item