Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Isovaleric, Methylmalonic, and Propionic Acid Decrease Anesthetic EC50 in Tadpoles, Modulate Glycine Receptor Function, and Interact with the Lipid 1,2-Dipalmitoyl-Sn-Glycero-3-Phosphocholine

Abstract

Introduction

Elevated concentrations of isovaleric (IVA), methylmalonic (MMA), and propionic acid are associated with impaired consciousness in genetic diseases (organic acidemias). We conjectured that part of the central nervous system depression observed in these disorders was due to anesthetic effects of these metabolites. We tested three hypotheses. First, that these metabolites would have anesthetic-sparing effects, possibly being anesthetics by themselves. Second, that these compounds would modulate glycine and gamma-aminobutyric acid (GABA(A)) receptor function, increasing chloride currents through these channels as potent clinical inhaled anesthetics do. Third, that these compounds would affect physical properties of lipids.

Methods

Anesthetic EC(50)s were measured in Xenopus laevis tadpoles. Glycine and GABA(A) receptors were expressed in Xenopus laevis oocytes and studied using two-electrode voltage clamping. Pressure-area isotherms of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers were measured with and without added organic acids.

Results

IVA acid was an anesthetic in tadpoles, whereas MMA and propionic acid decreased isoflurane's EC(50) by half. All three organic acids concentration-dependently increased current through alpha(1) glycine receptors. There were minimal effects on alpha(1)beta(2)gamma(2s) GABA(A) receptors. The organic acids increased total lateral pressure (surface pressure) of DPPC monolayers, including at mean molecular areas typical of bilayers.

Conclusion

IVA, MMA, and propionic acid have anesthetic effects in tadpoles, positively modulate glycine receptor function and affect physical properties of DPPC monolayers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View