Skip to main content
eScholarship
Open Access Publications from the University of California

On coverings of ellipsoids in Euclidean spaces

  • Author(s): Dumer, Ilya
  • Pinsker, M S
  • Prelov, V V
  • et al.
Abstract

The thinnest coverings of ellipsoids are studied in the Euclidean spaces of an arbitrary dimension n. Given any ellipsoid, the main goal is to find its epsilon-entropy, which is the logarithm of the minimum number of the balls of radius e needed to cover this ellipsoid. A tight asymptotic bound on the epsilon-entropy is obtained for all but the most oblong ellipsoids, which have very high eccentricity. This bound depends only on the volume of the sub-ellipsoid spanned over all the axes of the original ellipsoid, whose length (diameter) exceeds 2\epsilon. The results can be applied to vector quantization performed when data streams from different sources are bundled together in one block.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View