Skip to main content
eScholarship
Open Access Publications from the University of California

Toward personalizing treatment for depression: predicting diagnosis and severity.

  • Author(s): Huang, Sandy H
  • LePendu, Paea
  • Iyer, Srinivasan V
  • Tai-Seale, Ming
  • Carrell, David
  • Shah, Nigam H
  • et al.
Abstract

Depression is a prevalent disorder difficult to diagnose and treat. In particular, depressed patients exhibit largely unpredictable responses to treatment. Toward the goal of personalizing treatment for depression, we develop and evaluate computational models that use electronic health record (EHR) data for predicting the diagnosis and severity of depression, and response to treatment.We develop regression-based models for predicting depression, its severity, and response to treatment from EHR data, using structured diagnosis and medication codes as well as free-text clinical reports. We used two datasets: 35,000 patients (5000 depressed) from the Palo Alto Medical Foundation and 5651 patients treated for depression from the Group Health Research Institute.Our models are able to predict a future diagnosis of depression up to 12 months in advance (area under the receiver operating characteristic curve (AUC) 0.70-0.80). We can differentiate patients with severe baseline depression from those with minimal or mild baseline depression (AUC 0.72). Baseline depression severity was the strongest predictor of treatment response for medication and psychotherapy.It is possible to use EHR data to predict a diagnosis of depression up to 12 months in advance and to differentiate between extreme baseline levels of depression. The models use commonly available data on diagnosis, medication, and clinical progress notes, making them easily portable. The ability to automatically determine severity can facilitate assembly of large patient cohorts with similar severity from multiple sites, which may enable elucidation of the moderators of treatment response in the future.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View