Skip to main content
eScholarship
Open Access Publications from the University of California

Weakly non-Boussinesq convection in a gaseous spherical shell.

  • Author(s): Korre, Lydia
  • Brummell, Nicholas
  • Garaud, Pascale
  • et al.
Abstract

We examine the dynamics associated with weakly compressible convection in a spherical shell by running 3D direct numerical simulations using the Boussinesq formalism [Spiegel and Veronis, Astrophys. J. 131, 442 (1960)AJLEEY0004-637X10.1086/146849]. Motivated by problems in astrophysics, we assume the existence of a finite adiabatic temperature gradient ∇T_{ad} and use mixed boundary conditions for the temperature with fixed flux at the inner boundary and fixed temperature at the outer boundary. This setup is intrinsically more asymmetric than the more standard case of Rayleigh-Bénard convection in liquids between parallel plates with fixed temperature boundary conditions. Conditions where there is substantial asymmetry can cause a dramatic change in the nature of convection and we demonstrate that this is the case here. The flows can become pressure- rather than buoyancy-dominated, leading to anomalous heat transport by upflows. Counterintuitively, the background temperature gradient ∇T[over ¯] can develop a subadiabatic layer (where g·∇T[over ¯]

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View