- Main
Skew Calabi–Yau algebras and homological identities
Abstract
A skew Calabi-Yau algebra is a generalization of a Calabi-Yau algebra which allows for a non-trivial Nakayama automorphism. We prove three homological identities about the Nakayama automorphism and give several applications. The identities we prove show (i) how the Nakayama automorphism of a smash product algebra A#. H is related to the Nakayama automorphisms of a graded skew Calabi-Yau algebra A and a finite-dimensional Hopf algebra H that acts on it; (ii) how the Nakayama automorphism of a graded twist of A is related to the Nakayama automorphism of A; and (iii) that the Nakayama automorphism of a skew Calabi-Yau algebra A has trivial homological determinant in case A is noetherian, connected graded, and Koszul. © 2014 Elsevier Inc.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-