- Main
Absolutely representing systems, uniform smoothness, and type
Abstract
Absolutely representing system (ARS) in a Banach space $X$ is a set $D \subset X$ such that every vector $x$ in $X$ admits a representation by an absolutely convergent series $x = \sum_i a_i x_i$ with $(a_i)$ reals and $(x_i) \subset D$. We investigate some general properties of ARS. In particular, ARS in uniformly smooth and in B-convex Banach spaces are characterized via $\epsilon$-nets of the unit balls. Every ARS in a B-convex Banach space is quick, i.e. in the representation above one can achieve $\|a_i x_i\| < cq^i\|x\|$, $i=1,2,...$ for some constants $c>0$ and $q \in (0,1)$.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-