Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Design of Multi-Specificity in Protein Interfaces

Abstract

Interactions in protein networks may place constraints on protein interface sequences to maintain correct and avoid unwanted interactions. Here we describe a "multi-constraint" protein design protocol to predict sequences optimized for multiple criteria, such as maintaining sets of interactions, and apply it to characterize the mechanism and extent to which 20 multi-specific proteins are constrained by binding to multiple partners. We find that multi-specific binding is accommodated by at least two distinct patterns. In the simplest case, all partners share key interactions, and sequences optimized for binding to either single or multiple partners recover only a subset of native amino acid residues as optimal. More interestingly, for signaling interfaces functioning as network "hubs," we identify a different, "multi-faceted" mode, where each binding partner prefers its own subset of wild-type residues within the promiscuous binding site. Here, integration of preferences across all partners results in sequences much more "native-like" than seen in optimization for any single binding partner alone, suggesting these interfaces are substantially optimized for multi-specificity. The two strategies make distinct predictions for interface evolution and design. Shared interfaces may be better small molecule targets, whereas multi-faceted interactions may be more "designable" for altered specificity patterns. The computational methodology presented here is generalizable for examining how naturally occurring protein sequences have been selected to satisfy a variety of positive and negative constraints, as well as for rationally designing proteins to have desired patterns of altered specificity.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View